Andrea Belfiore - Academia.edu (original) (raw)

Andrea  Belfiore

Related Authors

Fernando Camilo

Peter Lundqvist

P. Ray

U.S. Naval Research Laboratory

Uploads

Papers by Andrea Belfiore

Research paper thumbnail of Discovery of a Faint X-Ray Counterpart and a Parsec-long X-Ray Tail for the Middle-aged, gamma-Ray-only Pulsar PSR J0357+3205

Astrophysical Journal, 2011

The Large Area Telescope (LAT) onboard the Fermi satellite opened a new era for pulsar astronomy,... more The Large Area Telescope (LAT) onboard the Fermi satellite opened a new era for pulsar astronomy, detecting gamma-ray pulsations from more than 60 pulsars, ~40% of which are not seen at radio wavelengths. One of the most interesting sources discovered by LAT is PSR J0357+3205, a radio-quiet, middle-aged (tau_C ~0.5 Myr) pulsar standing out for its very low spin-down luminosity (Erot ~6x10^33 erg/s), indeed the lowest among non-recycled gamma-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index Gamma=2.53+/-0.25). The absorbing column (NH=8+/-4x10^20 cm^-2) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from energetic particles from the pulsar wind, possibly similar to other elongated X-ray tails associated with rotation-powered pulsars and explained as bow-shock pulsar wind nebulae (PWNe). However, energetic arguments, as well as the peculiar morphology of the diffuse feature associated with PSR J0357+3205 make the bow-shock PWN interpretation rather challenging.

Research paper thumbnail of The Identification of the X-Ray Counterpart to PSR J2021+4026

Astrophysical Journal, 2011

We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+... more We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30.733s, Decl. +40 deg 26 min 46.04sec (J2000) with an estimated uncertainty of 1.3 arsec combined statistical and systematic error. Moreover, both the X-ray to gamma-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' >23.0 mag and r' > 25.2mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.

Research paper thumbnail of Incorporation of spent ion exchange resins in cement with and without additives

Applied Radiation and Isotopes, 1994

Research paper thumbnail of Cultura e societa parte I e II 1

Research paper thumbnail of Discovery of a Faint X-Ray Counterpart and a Parsec-long X-Ray Tail for the Middle-aged, gamma-Ray-only Pulsar PSR J0357+3205

Astrophysical Journal, 2011

The Large Area Telescope (LAT) onboard the Fermi satellite opened a new era for pulsar astronomy,... more The Large Area Telescope (LAT) onboard the Fermi satellite opened a new era for pulsar astronomy, detecting gamma-ray pulsations from more than 60 pulsars, ~40% of which are not seen at radio wavelengths. One of the most interesting sources discovered by LAT is PSR J0357+3205, a radio-quiet, middle-aged (tau_C ~0.5 Myr) pulsar standing out for its very low spin-down luminosity (Erot ~6x10^33 erg/s), indeed the lowest among non-recycled gamma-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index Gamma=2.53+/-0.25). The absorbing column (NH=8+/-4x10^20 cm^-2) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from energetic particles from the pulsar wind, possibly similar to other elongated X-ray tails associated with rotation-powered pulsars and explained as bow-shock pulsar wind nebulae (PWNe). However, energetic arguments, as well as the peculiar morphology of the diffuse feature associated with PSR J0357+3205 make the bow-shock PWN interpretation rather challenging.

Research paper thumbnail of The Identification of the X-Ray Counterpart to PSR J2021+4026

Astrophysical Journal, 2011

We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+... more We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30.733s, Decl. +40 deg 26 min 46.04sec (J2000) with an estimated uncertainty of 1.3 arsec combined statistical and systematic error. Moreover, both the X-ray to gamma-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' >23.0 mag and r' > 25.2mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.

Research paper thumbnail of Incorporation of spent ion exchange resins in cement with and without additives

Applied Radiation and Isotopes, 1994

Research paper thumbnail of Cultura e societa parte I e II 1

Log In