Adefope Owojori - Academia.edu (original) (raw)
Papers by Adefope Owojori
Heat Transfer
This study investigates turbulent heat transfer performance (HTP) and entropy production rate (EP... more This study investigates turbulent heat transfer performance (HTP) and entropy production rate (EPR) of CuO/H2O nanofluid flowing through Bessel‐like converging pipes. The effects of Reynold's number , nanoparticle volume ratio , and convergence index on the hydrodynamic, HTP, and EPR were examined. The results show that an increase in the convergence index enhances pressure drop, Nusselt number, and viscous EPR. However, the opposite is the case for the thermal EPR. Furthermore, the multiobjective optimization of pressure drop, Nusselt number, and EPR show that both Nusselt number and pressure drop attained the optimum value simultaneously.
International Nano Letters, 2021
КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ДЕФЕКТОВ В МОНОКРИСТАЛЛИЧЕСКОМ И АМОРФНОМ АЛЮМИНИИ © 2018 ... more КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ДЕФЕКТОВ В МОНОКРИСТАЛЛИЧЕСКОМ И АМОРФНОМ АЛЮМИНИИ © 2018 Е.В. Гончарова, аспирант кафедры общей физики, младший научный сотрудник лаборатории «Физика некристаллических материалов» Р.А. Кончаков, кандидат физико-математических наук, доцент, доцент кафедры общей физики, старший научный сотрудник лаборатории «Физика некристаллических материалов» А.С. Макаров, кандидат физико-математических наук, доцент кафедры общей физики, старший научный сотрудник лаборатории «Физика некристаллических материалов» В.А. Хоник, доктор физико-математических наук, профессор, заведующий кафедрой общей физики, главный научный сотрудник лаборатории «Физика некристаллических материалов» Воронежский государственный педагогический университет, Воронеж (Россия) Н.П. Кобелев, кандидат физико-математических наук, старший научный сотрудник Институт физики твердого тела РАН, Черноголовка (Россия)
Journal of Instrumentation, 2017
Scintillator detector responses to gamma sources directly depend on the deposited energies of the... more Scintillator detector responses to gamma sources directly depend on the deposited energies of the gamma sources, enabling adequate detector calibration. Non-availability of gamma sources requires adoption of other means of parameterizing detector response functions within the energy range of interest. Computational means can be used to simulate series of random processes resulting in the deposition of gamma source energies and its conversion to voltage pulses. A Photon TRANsport (PTRAN) code was written to simulate a NaI(Tl) detector's responses to photon and electron interaction processes within the cylindrical crystal. The PTRAN general Monte Carlo code took into account photon transport in detector system with well-defined crystal geometry; and random processes within the detector system. The generated data were plotted to yield simulated pulse height spectra on exposing the scintillation detector to incident gamma sources within 0.2 to 2 MeV . The simulated full width at half maximum (FWHM) of the photopeaks of the sources resulted in detector energy resolution of 0.01% deviation from experiment for Cs-137 and 0.66% for the two lines of Co-60. The ratio of the peak-to-total area under the spectrum was simulated to be in good agreement with experimental value. The PTRAN code can be relied on in calculating the response functions when relevant and adequate number of gamma sources are not available. The code can also be modified to accommodate other detector crystals and different geometry types.
Heat Transfer
This study investigates turbulent heat transfer performance (HTP) and entropy production rate (EP... more This study investigates turbulent heat transfer performance (HTP) and entropy production rate (EPR) of CuO/H2O nanofluid flowing through Bessel‐like converging pipes. The effects of Reynold's number , nanoparticle volume ratio , and convergence index on the hydrodynamic, HTP, and EPR were examined. The results show that an increase in the convergence index enhances pressure drop, Nusselt number, and viscous EPR. However, the opposite is the case for the thermal EPR. Furthermore, the multiobjective optimization of pressure drop, Nusselt number, and EPR show that both Nusselt number and pressure drop attained the optimum value simultaneously.
International Nano Letters, 2021
КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ДЕФЕКТОВ В МОНОКРИСТАЛЛИЧЕСКОМ И АМОРФНОМ АЛЮМИНИИ © 2018 ... more КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ДЕФЕКТОВ В МОНОКРИСТАЛЛИЧЕСКОМ И АМОРФНОМ АЛЮМИНИИ © 2018 Е.В. Гончарова, аспирант кафедры общей физики, младший научный сотрудник лаборатории «Физика некристаллических материалов» Р.А. Кончаков, кандидат физико-математических наук, доцент, доцент кафедры общей физики, старший научный сотрудник лаборатории «Физика некристаллических материалов» А.С. Макаров, кандидат физико-математических наук, доцент кафедры общей физики, старший научный сотрудник лаборатории «Физика некристаллических материалов» В.А. Хоник, доктор физико-математических наук, профессор, заведующий кафедрой общей физики, главный научный сотрудник лаборатории «Физика некристаллических материалов» Воронежский государственный педагогический университет, Воронеж (Россия) Н.П. Кобелев, кандидат физико-математических наук, старший научный сотрудник Институт физики твердого тела РАН, Черноголовка (Россия)
Journal of Instrumentation, 2017
Scintillator detector responses to gamma sources directly depend on the deposited energies of the... more Scintillator detector responses to gamma sources directly depend on the deposited energies of the gamma sources, enabling adequate detector calibration. Non-availability of gamma sources requires adoption of other means of parameterizing detector response functions within the energy range of interest. Computational means can be used to simulate series of random processes resulting in the deposition of gamma source energies and its conversion to voltage pulses. A Photon TRANsport (PTRAN) code was written to simulate a NaI(Tl) detector's responses to photon and electron interaction processes within the cylindrical crystal. The PTRAN general Monte Carlo code took into account photon transport in detector system with well-defined crystal geometry; and random processes within the detector system. The generated data were plotted to yield simulated pulse height spectra on exposing the scintillation detector to incident gamma sources within 0.2 to 2 MeV . The simulated full width at half maximum (FWHM) of the photopeaks of the sources resulted in detector energy resolution of 0.01% deviation from experiment for Cs-137 and 0.66% for the two lines of Co-60. The ratio of the peak-to-total area under the spectrum was simulated to be in good agreement with experimental value. The PTRAN code can be relied on in calculating the response functions when relevant and adequate number of gamma sources are not available. The code can also be modified to accommodate other detector crystals and different geometry types.