A. Regand - Academia.edu (original) (raw)

Uploads

Papers by A. Regand

Research paper thumbnail of Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass

Journal of dairy science, 2006

Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredie... more Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurizat...

Research paper thumbnail of Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems

Journal of dairy science, 2002

Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl ... more Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl cellulose [CMC], xanthan gum, locust bean gum [LBG], and gelatin) with or without milk solids-nonfat (MSNF) after freezing in a scraped surface heat exchanger and temperature cycling (5 cycles from -6 degrees C to -20 degrees C) were studied. Ice crystal growth was calculated from brightfield microscopic images acquired from samples before and after cycling. Freeze-substitution and low-temperature embedding (LR-Gold resin) were sample preparation techniques utilized for structure analyses by light microscopy and transmission electron microscopy. Differential staining for carbohydrates and proteins allowed the identification of stabilizer gel-like structures in LBG, gelatin, and gelatin/MSNF solutions. In the absence of milk proteins, xanthan and LBG were the most effective at retarding recrystallization, while in their presence, only xanthan had an effect. Cryo-gelation of the LBG was ob...

Research paper thumbnail of Effect of trehalose on the glass transition and ice crystal growth in ice cream

International Journal of Food Science & Technology, 2008

Research paper thumbnail of Structure and ice recrystallization in frozen stabilized ice cream model systems

Research paper thumbnail of Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass

Journal of dairy science, 2006

Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredie... more Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurizat...

Research paper thumbnail of Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems

Journal of dairy science, 2002

Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl ... more Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl cellulose [CMC], xanthan gum, locust bean gum [LBG], and gelatin) with or without milk solids-nonfat (MSNF) after freezing in a scraped surface heat exchanger and temperature cycling (5 cycles from -6 degrees C to -20 degrees C) were studied. Ice crystal growth was calculated from brightfield microscopic images acquired from samples before and after cycling. Freeze-substitution and low-temperature embedding (LR-Gold resin) were sample preparation techniques utilized for structure analyses by light microscopy and transmission electron microscopy. Differential staining for carbohydrates and proteins allowed the identification of stabilizer gel-like structures in LBG, gelatin, and gelatin/MSNF solutions. In the absence of milk proteins, xanthan and LBG were the most effective at retarding recrystallization, while in their presence, only xanthan had an effect. Cryo-gelation of the LBG was ob...

Research paper thumbnail of Effect of trehalose on the glass transition and ice crystal growth in ice cream

International Journal of Food Science & Technology, 2008

Research paper thumbnail of Structure and ice recrystallization in frozen stabilized ice cream model systems

Log In