Abdelkader BENCHIKH - Academia.edu (original) (raw)
Uploads
Papers by Abdelkader BENCHIKH
Journal of Applied Polymer Science, 2002
Poly(o‐toluidine) (POT) and poly(2‐chloroaniline) (P2ClAn) emeraldine salts were synthesized chem... more Poly(o‐toluidine) (POT) and poly(2‐chloroaniline) (P2ClAn) emeraldine salts were synthesized chemically by using formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH), and boric (H3BO3) acids. Ultraviolet‐visible absorption spectra (UV–Vis) analysis results indicated that POT has the better protonation effects than P2ClAn. Among the POTs synthesized using the four different acids, POT(H3BO3) showed the least protonation effect. The conductivities of prepared polymers were measured by a four‐probe technique. The highest conductivities were obtained in POTs synthesized by using formic, acetic, and propionic acids. Magnetic susceptibility measurements of the polymer salts were analyzed by using Gouy scale and it was found that POT(CH3COOH) and POT(C2H5COOH) salts are of bipolaron structure; other polymer salts are of polaron structure. The characterization of the polymers were investigated by Fourier infrared spectroscopy (FTIR), UV–Vis, thermogravimetric analysis, and scanning electr...
Electrochimica Acta, 2012
In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have b... more In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have been investigated as electrode materials. While their wide potential window was confirmed as a property shared by boron doped diamond (BDD) electrodes, their electrochemical activity with respect to fast and reversible redox systems, [Ru(NH 3) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and [IrCl 6 ] 2−/3− , was assessed by Electrochemical Impedance Spectroscopy (EIS) after cathodic or anodic electrochemical pre-treatments or for as grown samples. It was shown for the three systems that electrochemical reactivity of the a-CNx films was improved after the cathodic pre-treatment and degraded after the anodic one, the apparent heterogeneous rate constant k 0app being decreased by at least one order of magnitude for the latter case. A high k 0app value of 0.11 cm s −1 for [IrCl 6 ] 2−/3− was obtained, close to the highest values found for BDD electrodes.
Analytica Chimica Acta, 2013
Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity... more Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L(-1) KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L(-1) for DA and 1.05 μmol L(-1) for AA, whereas with the BDD electrode these values were 0.283 μmol L(-1) and 0.968 μmol L(-1), respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.
Journal of Applied Polymer Science, 2002
Poly(o‐toluidine) (POT) and poly(2‐chloroaniline) (P2ClAn) emeraldine salts were synthesized chem... more Poly(o‐toluidine) (POT) and poly(2‐chloroaniline) (P2ClAn) emeraldine salts were synthesized chemically by using formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH), and boric (H3BO3) acids. Ultraviolet‐visible absorption spectra (UV–Vis) analysis results indicated that POT has the better protonation effects than P2ClAn. Among the POTs synthesized using the four different acids, POT(H3BO3) showed the least protonation effect. The conductivities of prepared polymers were measured by a four‐probe technique. The highest conductivities were obtained in POTs synthesized by using formic, acetic, and propionic acids. Magnetic susceptibility measurements of the polymer salts were analyzed by using Gouy scale and it was found that POT(CH3COOH) and POT(C2H5COOH) salts are of bipolaron structure; other polymer salts are of polaron structure. The characterization of the polymers were investigated by Fourier infrared spectroscopy (FTIR), UV–Vis, thermogravimetric analysis, and scanning electr...
Electrochimica Acta, 2012
In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have b... more In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have been investigated as electrode materials. While their wide potential window was confirmed as a property shared by boron doped diamond (BDD) electrodes, their electrochemical activity with respect to fast and reversible redox systems, [Ru(NH 3) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and [IrCl 6 ] 2−/3− , was assessed by Electrochemical Impedance Spectroscopy (EIS) after cathodic or anodic electrochemical pre-treatments or for as grown samples. It was shown for the three systems that electrochemical reactivity of the a-CNx films was improved after the cathodic pre-treatment and degraded after the anodic one, the apparent heterogeneous rate constant k 0app being decreased by at least one order of magnitude for the latter case. A high k 0app value of 0.11 cm s −1 for [IrCl 6 ] 2−/3− was obtained, close to the highest values found for BDD electrodes.
Analytica Chimica Acta, 2013
Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity... more Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L(-1) KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L(-1) for DA and 1.05 μmol L(-1) for AA, whereas with the BDD electrode these values were 0.283 μmol L(-1) and 0.968 μmol L(-1), respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.