Adeline Paiement - Academia.edu (original) (raw)
Papers by Adeline Paiement
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific re... more HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires
Zenodo (CERN European Organization for Nuclear Research), Feb 28, 2023
Environmental Data Science, Dec 31, 2022
Determining an accurate picture of ocean currents is an important societal challenge for oceanogr... more Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our understanding of the vital role currents play in regulating Earth's climate, and in the dispersal of marine species and pollutants, including microplastics. The geodetic approach, which combines satellite observations of sea level and Earth's gravity, offers the only means to estimate the dominant geostrophic component of these currents globally. Unfortunately, however, geodetically-determined geostrophic currents suffer from high levels of contamination in the form of geodetic noise. Conventional approaches use isotropic spatial filters to improve the signal-to-noise ratio, though this results in high levels of attenuation. Hence, the use of deep learning to improve the geodetic determination of the ocean currents is investigated. Supervised machine learning typically requires clean targets from which to learn. However, such targets do not exist in this case. Therefore, a training dataset is generated by substituting clean targets with naturally smooth climate model data and generative machine learning networks are employed to replicate geodetic noise, providing noisy input and clean target pairs. Prior knowledge of the geodetic noise is exploited to develop a more realistic training dataset. A convolutional denoising autoencoder (CDAE) is then trained on these pairs. The trained CDAE model is then applied to unseen real geodetic ocean currents. It is demonstrated that our method outperforms conventional isotropic filtering in a case study of four key regions: the Gulf Stream, the Kuroshio Current, the Agulhas Current, and the Brazil-Malvinas Confluence Zone. Impact Statement Although ocean currents play a crucial role in regulating Earth's climate and in the dispersal of marine species and pollutants, such as microplastics, they are difficult to measure accurately. Satellite observations offer the only means by which ocean currents can be estimated across the entire global ocean. However, these estimates are severely contaminated by noise. Removal of this noise by conventional filtering methods leads to blurred currents. Therefore, this work presents a novel deep-learning method that successfully removes noise, while greatly reducing the current attenuation, allowing more accurate estimates of current speed and position to be determined. The method may have more general applicability to other geophysical observations where filtering is required to remove noise.
Research Square (Research Square), Sep 24, 2023
The study and prediction of space weather entails the analysis of solar images showing structures... more The study and prediction of space weather entails the analysis of solar images showing structures of the Sun's atmosphere. When imaged from the Earth's ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures.
This repository contains the source code (MATLAB version including shape) of the DS-KCF tracker p... more This repository contains the source code (MATLAB version including shape) of the DS-KCF tracker published in S. Hannuna, M. Camplani, J. Hall, M. Mirmehdi, D. Damen, T. Burghardt, A. Paiement, L. Tao, DS-KCF: A real-time tracker for RGB-D data, Journal of Real-Time Image Processing (2016)
Environmental sensor data of several people performing unscripted cooking activities in the Spher... more Environmental sensor data of several people performing unscripted cooking activities in the Sphere kitchen. Access to this dataset is restricted and is available to bona fide researchers only. Please email data-bris@bristol.ac.uk to apply for access.
arXiv (Cornell University), Jul 16, 2022
We address the problem of people detection in RGB-D data where we leverage depth information to d... more We address the problem of people detection in RGB-D data where we leverage depth information to develop a region-of-interest (ROI) selection method that provides proposals to two color and depth CNNs. To combine the detections produced by the two CNNs, we propose a novel fusion approach based on the characteristics of depth images. We also present a new depthencoding scheme, which not only encodes depth images into three channels but also enhances the information for classification. We conduct experiments on a publicly available RGB-D people dataset and show that our approach outperforms the baseline models that only use RGB data.
HAL (Le Centre pour la Communication Scientifique Directe), Sep 16, 2019
Iet Computer Vision, Mar 22, 2017
Multiple human tracking (MHT) is a fundamental task in many computer vision applications. Appeara... more Multiple human tracking (MHT) is a fundamental task in many computer vision applications. Appearance-based approaches, primarily formulated on RGB data, are constrained and affected by problems arising from occlusions and/or illumination variations. In recent years, the arrival of cheap RGB-depth devices has led to many new approaches to MHT, and many of these integrate colour and depth cues to improve each and every stage of the process. In this survey, the authors present the common processing pipeline of these methods and review their methodology based (a) on how they implement this pipeline and (b) on what role depth plays within each stage of it. They identify and introduce existing, publicly available, benchmark datasets and software resources that fuse colour and depth data for MHT. Finally, they present a brief comparative evaluation of the performance of those works that have applied their methods to these datasets.
Applied Intelligence, Jul 13, 2023
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific re... more HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
2022 IEEE International Conference on Image Processing (ICIP), Oct 16, 2022
In this paper, we address the challenge of segmenting global contaminants in large images. The pr... more In this paper, we address the challenge of segmenting global contaminants in large images. The precise delineation of such structures requires ample global context alongside understanding of textural patterns. CNNs specialise in the latter, though their ability to generate global features is limited. Attention measures long range dependencies in images, capturing global context, though at a large computational cost. We propose a gridded attention mechanism to address this limitation, greatly increasing efficiency by processing multiscale features into smaller tiles. We also enhance the attention mechanism for increased sensitivity to texture orientation, by measuring correlations across features dependent on different orientations, in addition to channel and positional attention. We present results on a new dataset of astronomical images, where the task is segmenting large contaminating dust clouds.
HAL (Le Centre pour la Communication Scientifique Directe), Sep 16, 2019
Precisely detecting solar Active Regions (AR) from multi-spectral images is a challenging task ye... more Precisely detecting solar Active Regions (AR) from multi-spectral images is a challenging task yet important in understanding solar activity and its influence on space weather. A main challenge comes from each modality capturing a different location of these 3D objects, as opposed to more traditional multi-spectral imaging scenarios where all image bands observe the same scene. We present a multi-task deep learning framework that exploits the dependencies between image bands to produce 3D AR detection where different image bands (and physical locations) each have their own set of results. We compare our detection method against baseline approaches for solar image analysis (multi-channel coronal hole detection, SPOCA for ARs (Verbeeck et al., 2013)) and a state-of-the-art deep learning method (Faster RCNN) and show enhanced performances in detecting ARs jointly from multiple bands.
HAL (Le Centre pour la Communication Scientifique Directe), Jul 23, 2023
We explore the use of deep learning to localise galactic structures in low surface brightness (LS... more We explore the use of deep learning to localise galactic structures in low surface brightness (LSB) images. LSB imaging reveals many interesting structures, though these are frequently confused with galactic dust contamination, due to a strong local visual similarity. We propose a novel unified approach to multi-class segmentation of galactic structures and of extended amorphous image contaminants. Our panoptic segmentation model combines Mask R-CNN with a contaminant specialised network and utilises an adaptive preprocessing layer to better capture the subtle features of LSB images. Further, a human-in-the-loop training scheme is employed to augment ground truth labels. These different approaches are evaluated in turn, and together greatly improve the detection of both galactic structures and contaminants in LSB images.
Cronfa (Swansea University), 2022
Precisely detecting solar active regions (AR) from multi-spectral images is a challenging task ye... more Precisely detecting solar active regions (AR) from multi-spectral images is a challenging task yet important in understanding solar activity and its influence on space weather. A main challenge comes from each modality capturing a different location of these 3D objects, as opposed to more traditional multi-spectral imaging scenarios where all image bands observe the same scene. We present a multi-task deep learning framework that exploits the dependencies between image bands to produce 3D AR detection where different image bands (and physical locations) each have their own set of results. Different feature fusion strategies are investigated in this work, where information from different image modalities is aggregated at different semantic levels throughout the network. This allows the network to benefit from the joint analysis while preserving the band-specific information. We compare our detection method against baseline approaches for solar image analysis (multichannel coronal hole detection, SPOCA for ARs (Verbeeck et al. Astron Astrophys 561:16, 2013)) and a state-of-the-art deep learning method (Faster RCNN) and show enhanced performances in detecting ARs jointly from multiple bands. We also evaluate our proposed approach on synthetic data of similar spatial configurations obtained from annotated multi-modal magnetic resonance images.
Neural Networks
• We leverage the existence of different edge types to modulate the information flow within graph... more • We leverage the existence of different edge types to modulate the information flow within graph neural networks. To this end, we formulate and compare two strategies, namely specialised message production and specialised state update.
arXiv (Cornell University), Apr 12, 2022
Reconstructions of Lagrangian drift, for example for objects lost at sea, are often uncertain due... more Reconstructions of Lagrangian drift, for example for objects lost at sea, are often uncertain due to unresolved physical phenomena within the data. Uncertainty is usually overcome by introducing stochasticity into the drift, but this approach requires specific assumptions for modelling uncertainty. We remove this constraint by presenting a purely data-driven framework for modelling probabilistic drift in flexible environments. Using ocean circulation model simulations, we generate probabilistic trajectories of object location by simulating uncertainty in the initial object position. We train an emulator of probabilistic drift over one day given perfectly known velocities and observe good agreement with numerical simulations. Several loss functions are tested. Then, we strain our framework by training models where the input information is imperfect. On these harder scenarios, we observe reasonable predictions although the effects of data drift become noticeable when evaluating the models against unseen flow scenarios.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific re... more HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires
Zenodo (CERN European Organization for Nuclear Research), Feb 28, 2023
Environmental Data Science, Dec 31, 2022
Determining an accurate picture of ocean currents is an important societal challenge for oceanogr... more Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our understanding of the vital role currents play in regulating Earth's climate, and in the dispersal of marine species and pollutants, including microplastics. The geodetic approach, which combines satellite observations of sea level and Earth's gravity, offers the only means to estimate the dominant geostrophic component of these currents globally. Unfortunately, however, geodetically-determined geostrophic currents suffer from high levels of contamination in the form of geodetic noise. Conventional approaches use isotropic spatial filters to improve the signal-to-noise ratio, though this results in high levels of attenuation. Hence, the use of deep learning to improve the geodetic determination of the ocean currents is investigated. Supervised machine learning typically requires clean targets from which to learn. However, such targets do not exist in this case. Therefore, a training dataset is generated by substituting clean targets with naturally smooth climate model data and generative machine learning networks are employed to replicate geodetic noise, providing noisy input and clean target pairs. Prior knowledge of the geodetic noise is exploited to develop a more realistic training dataset. A convolutional denoising autoencoder (CDAE) is then trained on these pairs. The trained CDAE model is then applied to unseen real geodetic ocean currents. It is demonstrated that our method outperforms conventional isotropic filtering in a case study of four key regions: the Gulf Stream, the Kuroshio Current, the Agulhas Current, and the Brazil-Malvinas Confluence Zone. Impact Statement Although ocean currents play a crucial role in regulating Earth's climate and in the dispersal of marine species and pollutants, such as microplastics, they are difficult to measure accurately. Satellite observations offer the only means by which ocean currents can be estimated across the entire global ocean. However, these estimates are severely contaminated by noise. Removal of this noise by conventional filtering methods leads to blurred currents. Therefore, this work presents a novel deep-learning method that successfully removes noise, while greatly reducing the current attenuation, allowing more accurate estimates of current speed and position to be determined. The method may have more general applicability to other geophysical observations where filtering is required to remove noise.
Research Square (Research Square), Sep 24, 2023
The study and prediction of space weather entails the analysis of solar images showing structures... more The study and prediction of space weather entails the analysis of solar images showing structures of the Sun's atmosphere. When imaged from the Earth's ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures.
This repository contains the source code (MATLAB version including shape) of the DS-KCF tracker p... more This repository contains the source code (MATLAB version including shape) of the DS-KCF tracker published in S. Hannuna, M. Camplani, J. Hall, M. Mirmehdi, D. Damen, T. Burghardt, A. Paiement, L. Tao, DS-KCF: A real-time tracker for RGB-D data, Journal of Real-Time Image Processing (2016)
Environmental sensor data of several people performing unscripted cooking activities in the Spher... more Environmental sensor data of several people performing unscripted cooking activities in the Sphere kitchen. Access to this dataset is restricted and is available to bona fide researchers only. Please email data-bris@bristol.ac.uk to apply for access.
arXiv (Cornell University), Jul 16, 2022
We address the problem of people detection in RGB-D data where we leverage depth information to d... more We address the problem of people detection in RGB-D data where we leverage depth information to develop a region-of-interest (ROI) selection method that provides proposals to two color and depth CNNs. To combine the detections produced by the two CNNs, we propose a novel fusion approach based on the characteristics of depth images. We also present a new depthencoding scheme, which not only encodes depth images into three channels but also enhances the information for classification. We conduct experiments on a publicly available RGB-D people dataset and show that our approach outperforms the baseline models that only use RGB data.
HAL (Le Centre pour la Communication Scientifique Directe), Sep 16, 2019
Iet Computer Vision, Mar 22, 2017
Multiple human tracking (MHT) is a fundamental task in many computer vision applications. Appeara... more Multiple human tracking (MHT) is a fundamental task in many computer vision applications. Appearance-based approaches, primarily formulated on RGB data, are constrained and affected by problems arising from occlusions and/or illumination variations. In recent years, the arrival of cheap RGB-depth devices has led to many new approaches to MHT, and many of these integrate colour and depth cues to improve each and every stage of the process. In this survey, the authors present the common processing pipeline of these methods and review their methodology based (a) on how they implement this pipeline and (b) on what role depth plays within each stage of it. They identify and introduce existing, publicly available, benchmark datasets and software resources that fuse colour and depth data for MHT. Finally, they present a brief comparative evaluation of the performance of those works that have applied their methods to these datasets.
Applied Intelligence, Jul 13, 2023
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific re... more HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
2022 IEEE International Conference on Image Processing (ICIP), Oct 16, 2022
In this paper, we address the challenge of segmenting global contaminants in large images. The pr... more In this paper, we address the challenge of segmenting global contaminants in large images. The precise delineation of such structures requires ample global context alongside understanding of textural patterns. CNNs specialise in the latter, though their ability to generate global features is limited. Attention measures long range dependencies in images, capturing global context, though at a large computational cost. We propose a gridded attention mechanism to address this limitation, greatly increasing efficiency by processing multiscale features into smaller tiles. We also enhance the attention mechanism for increased sensitivity to texture orientation, by measuring correlations across features dependent on different orientations, in addition to channel and positional attention. We present results on a new dataset of astronomical images, where the task is segmenting large contaminating dust clouds.
HAL (Le Centre pour la Communication Scientifique Directe), Sep 16, 2019
Precisely detecting solar Active Regions (AR) from multi-spectral images is a challenging task ye... more Precisely detecting solar Active Regions (AR) from multi-spectral images is a challenging task yet important in understanding solar activity and its influence on space weather. A main challenge comes from each modality capturing a different location of these 3D objects, as opposed to more traditional multi-spectral imaging scenarios where all image bands observe the same scene. We present a multi-task deep learning framework that exploits the dependencies between image bands to produce 3D AR detection where different image bands (and physical locations) each have their own set of results. We compare our detection method against baseline approaches for solar image analysis (multi-channel coronal hole detection, SPOCA for ARs (Verbeeck et al., 2013)) and a state-of-the-art deep learning method (Faster RCNN) and show enhanced performances in detecting ARs jointly from multiple bands.
HAL (Le Centre pour la Communication Scientifique Directe), Jul 23, 2023
We explore the use of deep learning to localise galactic structures in low surface brightness (LS... more We explore the use of deep learning to localise galactic structures in low surface brightness (LSB) images. LSB imaging reveals many interesting structures, though these are frequently confused with galactic dust contamination, due to a strong local visual similarity. We propose a novel unified approach to multi-class segmentation of galactic structures and of extended amorphous image contaminants. Our panoptic segmentation model combines Mask R-CNN with a contaminant specialised network and utilises an adaptive preprocessing layer to better capture the subtle features of LSB images. Further, a human-in-the-loop training scheme is employed to augment ground truth labels. These different approaches are evaluated in turn, and together greatly improve the detection of both galactic structures and contaminants in LSB images.
Cronfa (Swansea University), 2022
Precisely detecting solar active regions (AR) from multi-spectral images is a challenging task ye... more Precisely detecting solar active regions (AR) from multi-spectral images is a challenging task yet important in understanding solar activity and its influence on space weather. A main challenge comes from each modality capturing a different location of these 3D objects, as opposed to more traditional multi-spectral imaging scenarios where all image bands observe the same scene. We present a multi-task deep learning framework that exploits the dependencies between image bands to produce 3D AR detection where different image bands (and physical locations) each have their own set of results. Different feature fusion strategies are investigated in this work, where information from different image modalities is aggregated at different semantic levels throughout the network. This allows the network to benefit from the joint analysis while preserving the band-specific information. We compare our detection method against baseline approaches for solar image analysis (multichannel coronal hole detection, SPOCA for ARs (Verbeeck et al. Astron Astrophys 561:16, 2013)) and a state-of-the-art deep learning method (Faster RCNN) and show enhanced performances in detecting ARs jointly from multiple bands. We also evaluate our proposed approach on synthetic data of similar spatial configurations obtained from annotated multi-modal magnetic resonance images.
Neural Networks
• We leverage the existence of different edge types to modulate the information flow within graph... more • We leverage the existence of different edge types to modulate the information flow within graph neural networks. To this end, we formulate and compare two strategies, namely specialised message production and specialised state update.
arXiv (Cornell University), Apr 12, 2022
Reconstructions of Lagrangian drift, for example for objects lost at sea, are often uncertain due... more Reconstructions of Lagrangian drift, for example for objects lost at sea, are often uncertain due to unresolved physical phenomena within the data. Uncertainty is usually overcome by introducing stochasticity into the drift, but this approach requires specific assumptions for modelling uncertainty. We remove this constraint by presenting a purely data-driven framework for modelling probabilistic drift in flexible environments. Using ocean circulation model simulations, we generate probabilistic trajectories of object location by simulating uncertainty in the initial object position. We train an emulator of probabilistic drift over one day given perfectly known velocities and observe good agreement with numerical simulations. Several loss functions are tested. Then, we strain our framework by training models where the input information is imperfect. On these harder scenarios, we observe reasonable predictions although the effects of data drift become noticeable when evaluating the models against unseen flow scenarios.