Adita Joshi - Academia.edu (original) (raw)

Papers by Adita Joshi

Research paper thumbnail of Diagnostic and Prognostic Utility of a DNA Hypermethylated Gene Signature in Prostate Cancer

We aimed to identify a prostate cancer DNA hypermethylationmicroarray signature (denoted as PHYMA... more We aimed to identify a prostate cancer DNA hypermethylationmicroarray signature (denoted as PHYMA) that differentiates prostate cancer from benign prostate hyperplasia (BPH), high from low-grade and lethal from non-lethal cancers. This is a non-randomized retrospective study in 111 local Asian men (87 prostate cancers and 24 BPH) treated from 1995 to 2009 in our institution. Archival prostate epithelia were laser-capture microdissected and genomic DNA extracted and bisulfite-converted. Samples were profiled using Illumina GoldenGate Methylation microarray, with raw data processed by GenomeStudio. A classification model was generated using support vector machine, consisting of a 55-probe DNA methylation signature of 46 genes. The model was independently validated on an internal testing dataset which yielded cancer detection sensitivity and specificity of 95.3 % and 100 % respectively, with overall accuracy of 96.4%. Second validation on another independent western cohort yielded 89.8...

Research paper thumbnail of Toxic Effects of Food Colorants Erythrosine and Tartrazine on Zebrafish Embryo Development

Current Research in Nutrition and Food Science Journal

Erythrosine and tartrazine are common artificial food additives which have become a part of daily... more Erythrosine and tartrazine are common artificial food additives which have become a part of daily human consumption. Advised daily intake values for these agents are set strictly, however, the actual intake is much higher than the recommended ADI. A higher intake of erythrosine and tartrazine is shown to exhibit adverse effects in mammalian models, and is thus a matter of public health concern. In this study we have assessed and compared the dose-dependent effects of erythrosine and tartrazine on inducing oxidative stress in zebrafish embryos. We performed the superoxide dismutase (SOD) enzyme activity assay to test the effect of the two food colorants on reactive oxygen species (ROS) production. Erythrosine and tartrazine treated embryos showed significantly increased SOD activity in an enzyme assay. Additionally SOD mRNA transcripts in the treated embryos were found to be upregulated. Erythrosine and tartrazine treatment specifically altered SOD1 mRNA transcript levels while it ha...

Research paper thumbnail of Identification of functions of DWnt4 gene in ventral epidermis of embryos and abdomen of adult Drosophila during development

Indian Journal of Genetics and Plant Breeding (The)

Research paper thumbnail of Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility

G3 (Bethesda, Md.), Apr 7, 2016

DNA transposons and retroviruses are important transgenic tools for genome engineering. An import... more DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our finding...

Research paper thumbnail of Chamber Specific Gene Expression Landscape of the Zebrafish Heart

PLOS ONE, 2016

The organization of structure and function of cardiac chambers in vertebrates is defined by chamb... more The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers-atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis.

Research paper thumbnail of Wnt gene cluster in ventral ectoderm patterning of Drosophila embryo

Indian Journal of Genetics and Plant Breeding (The), 2015

Research paper thumbnail of Mutants dissecting development and behaviour in Drosophila

We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the ... more We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the IARI, spearheaded by the visionary insight of M. S. Swaminathan. The work started with the study of indirect effect of radiation and the synergistic interaction of physical and chemical mutagens on chromosomal and genetic changes. This paved the way for the study of single gene mutants in dissecting developmental and behavioural processes. New genes discovered by us have been shown to encode conserved cell signalling molecules controlling developmental and behavioural pathways. With the complete sequencing of the Drosophila genome, in the year 2000, mounting evidence for the homology between Drosophila and human genes controlling genetic disorders became available. This has led to the fly becoming an indispensable tool for studying human diseases as well as a model to test for drugs and pharmaceuticals against human diseases and complex behavioural processes. For example wingless in Drosophila belongs to the conserved Wnt gene family and aberrant WNT signalling is linked to a range of human diseases, most notably cancer. Inhibition as well as activation of WNT signalling form the basis of an effective therapy for some cancers as well as several other clinical conditions. Recent experiments have shown that WNTs might also normally participate in self-renewal, proliferation or differentiation of stem cells and altering WNT signalling might be beneficial to the use of stem cells for therapeutic means. Likewise, the stambhA mutant of Drosophila which was discovered for its temperature-dependent paralytic behaviour is the fly homologue of Phospholipase Cβ β. Phospholipase C mediated G protein signalling plays a central role in vital processes controlling epilepsy, vision, taste, and olfaction in animals. Proteins of the G-signalling pathway are of intense research interest since many human diseases involve defects in G-protein signalling pathways. In fact, approximately 50% of the drugs used in clinical medicine target cellular pathways containing G-protein signalling elements. The detailed study of PLC-dependent G protein signalling in Drosophila is bound to throw light on the role of G protein-mediated biological functions and on similar genes and their functions in human diseases.

Research paper thumbnail of Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 2012

Bemisia tabaci is the major vector pest of agricultural crops all over the world. In this study w... more Bemisia tabaci is the major vector pest of agricultural crops all over the world. In this study we report the different bacterial endosymbionts associated with B. tabaci sampled from 14 different locations in North India. Using 16S rDNA clone library sequences we were able to identify Portiera, the primary endosymbiont of B. tabaci, and other secondary endosymbionts like Cardinium, Wolbachia, Rickettsia and Arsenophonus. Along with these we also detected Bacillus, Enterobacter, Paracoccus and Acinetobacter. These secondary endosymbionts were not uniformly distributed in all the locations. Phylogenetic analysis of 16S rDNA sequences of Cardinium, Wolbachia, Rickettsia and Arsenophonus showed that each of these bacteria form a separate cluster when compared to their respective counterparts from other parts of the world. MtCO1 gene based phylogenetic analysis showed the presence of Asia I and Asia II genetic groups of B. tabaci in N. India. The multiple correspondence analyses showed n...

Research paper thumbnail of Dynamic Expression of Long Non-Coding RNAs (lncRNAs) in Adult Zebrafish

PLoS ONE, 2013

Long non-coding RNAs (lncRNA) represent an assorted class of transcripts having little or no prot... more Long non-coding RNAs (lncRNA) represent an assorted class of transcripts having little or no protein coding capacity and have recently gained importance for their function as regulators of gene expression. Molecular studies on lncRNA have uncovered multifaceted interactions with protein coding genes. It has been suggested that lncRNAs are an additional layer of regulatory switches involved in gene regulation during development and disease. LncRNAs expressing in specific tissues or cell types during adult stages can have potential roles in form, function, maintenance and repair of tissues and organs. We used RNA sequencing followed by computational analysis to identify tissue restricted lncRNA transcript signatures from five different tissues of adult zebrafish. The present study reports 442 predicted lncRNA transcripts from adult zebrafish tissues out of which 419 were novel lncRNA transcripts. Of these, 77 lncRNAs show predominant tissue restricted expression across the five major tissues investigated. Adult zebrafish brain expressed the largest number of tissue restricted lncRNA transcripts followed by cardiovascular tissue. We also validated the tissue restricted expression of a subset of lncRNAs using independent methods. Our data constitute a useful genomic resource towards understanding the expression of lncRNAs in various tissues in adult zebrafish. Our study is thus a starting point and opens a way towards discovering new molecular interactions of gene expression within the specific adult tissues in the context of maintenance of organ form and function.

Research paper thumbnail of Short Stories on Zebrafish Long Noncoding RNAs

Zebrafish, 2014

The recent re-annotation of the transcriptome of human and other model organisms, using next-gene... more The recent re-annotation of the transcriptome of human and other model organisms, using next-generation sequencing approaches, has unravelled a hitherto unknown repertoire of transcripts that do not have a potential to code for proteins. These transcripts have been largely classified into an amorphous class popularly known as long noncoding RNAs (lncRNA). This discovery of lncRNAs in human and other model systems have added a new layer to the understanding of gene regulation at the transcriptional and post-transcriptional levels. In recent years, three independent studies have discovered a number of lncRNAs expressed in different stages of zebrafish development and adult tissues using a high-throughput RNA sequencing approach, significantly adding to the repertoire of genes known in zebrafish. A subset of these transcripts also shows distinct and specific spatiotemporal patterns of gene expression, pointing to a tight regulatory control and potential functional roles in development, organogenesis, and/ or homeostasis. This review provides an overview of the lncRNAs in zebrafish and discusses how their discovery could provide new insights into understanding biology, explaining mutant phenotypes, and helping in potentially modeling disease processes.

Research paper thumbnail of Diagnostic and Prognostic Utility of a DNA Hypermethylated Gene Signature in Prostate Cancer

PLoS ONE, 2014

We aimed to identify a prostate cancer DNA hypermethylation microarray signature (denoted as PHYM... more We aimed to identify a prostate cancer DNA hypermethylation microarray signature (denoted as PHYMA) that differentiates prostate cancer from benign prostate hyperplasia (BPH), high from low-grade and lethal from non-lethal cancers. This is a non-randomized retrospective study in 111 local Asian men (87 prostate cancers and 24 BPH) treated from 1995 to 2009 in our institution. Archival prostate epithelia were laser-capture microdissected and genomic DNA extracted and bisulfiteconverted. Samples were profiled using Illumina GoldenGate Methylation microarray, with raw data processed by GenomeStudio. A classification model was generated using support vector machine, consisting of a 55-probe DNA methylation signature of 46 genes. The model was independently validated on an internal testing dataset which yielded cancer detection sensitivity and specificity of 95.3% and 100% respectively, with overall accuracy of 96.4%. Second validation on another independent western cohort yielded 89.8% sensitivity and 66.7% specificity, with overall accuracy of 88.7%. A PHYMA score was developed for each sample based on the state of methylation in the PHYMA signature. Increasing PHYMA score was significantly associated with higher Gleason score and Gleason primary grade. Men with higher PHYMA scores have poorer survival on univariate (p = 0.0038, HR = 3.89) and multivariate analyses when controlled for (i) clinical stage (p = 0.055, HR = 2.57), and (ii) clinical stage and Gleason score (p = 0.043, HR = 2.61). We further performed bisulfite genomic sequencing on 2 relatively unknown genes to demonstrate robustness of the assay results. PHYMA is thus a signature with high sensitivity and specificity for discriminating tumors from BPH, and has a potential role in early detection and in predicting survival.

Research paper thumbnail of A Multifunctional Mutagenesis System for Analysis of Gene Function in Zebrafish

Since the sequencing of the human reference genome, many human disease-related genes have been di... more Since the sequencing of the human reference genome, many human disease-related genes have been discovered. However, understanding the functions of all the genes in the genome remains a challenge. The biological activities of these genes are usually investigated in model organisms, such as mice and zebrafish. Large-scale mutagenesis screens to generate disruptive mutations are useful for identifying and understanding the activities of genes. Here, we report a multifunctional mutagenesis system in zebrafish using the maize Ds transposon. Integration of the Ds transposable element containing an mCherry reporter for protein trap events, and an EGFP reporter for enhancer trap events, produced a collection of transgenic lines marking distinct cell and tissue types, and mutagenized genes in the zebrafish genome by trapping and prematurely terminating endogenous protein coding sequences. We obtained 642 zebrafish lines with dynamic reporter gene expression. The characterized fish lines with specific expression patterns will be made available through the European Zebrafish Resource Center (EZRC), and a database of reporter expression is available online (http://fishtrap.warwick.ac.uk/). Our approach complements other efforts in zebrafish to facilitate functional genomic studies in this model of human development and disease.

Research paper thumbnail of Diagnostic and Prognostic Utility of a DNA Hypermethylated Gene Signature in Prostate Cancer

We aimed to identify a prostate cancer DNA hypermethylationmicroarray signature (denoted as PHYMA... more We aimed to identify a prostate cancer DNA hypermethylationmicroarray signature (denoted as PHYMA) that differentiates prostate cancer from benign prostate hyperplasia (BPH), high from low-grade and lethal from non-lethal cancers. This is a non-randomized retrospective study in 111 local Asian men (87 prostate cancers and 24 BPH) treated from 1995 to 2009 in our institution. Archival prostate epithelia were laser-capture microdissected and genomic DNA extracted and bisulfite-converted. Samples were profiled using Illumina GoldenGate Methylation microarray, with raw data processed by GenomeStudio. A classification model was generated using support vector machine, consisting of a 55-probe DNA methylation signature of 46 genes. The model was independently validated on an internal testing dataset which yielded cancer detection sensitivity and specificity of 95.3 % and 100 % respectively, with overall accuracy of 96.4%. Second validation on another independent western cohort yielded 89.8...

Research paper thumbnail of Toxic Effects of Food Colorants Erythrosine and Tartrazine on Zebrafish Embryo Development

Current Research in Nutrition and Food Science Journal

Erythrosine and tartrazine are common artificial food additives which have become a part of daily... more Erythrosine and tartrazine are common artificial food additives which have become a part of daily human consumption. Advised daily intake values for these agents are set strictly, however, the actual intake is much higher than the recommended ADI. A higher intake of erythrosine and tartrazine is shown to exhibit adverse effects in mammalian models, and is thus a matter of public health concern. In this study we have assessed and compared the dose-dependent effects of erythrosine and tartrazine on inducing oxidative stress in zebrafish embryos. We performed the superoxide dismutase (SOD) enzyme activity assay to test the effect of the two food colorants on reactive oxygen species (ROS) production. Erythrosine and tartrazine treated embryos showed significantly increased SOD activity in an enzyme assay. Additionally SOD mRNA transcripts in the treated embryos were found to be upregulated. Erythrosine and tartrazine treatment specifically altered SOD1 mRNA transcript levels while it ha...

Research paper thumbnail of Identification of functions of DWnt4 gene in ventral epidermis of embryos and abdomen of adult Drosophila during development

Indian Journal of Genetics and Plant Breeding (The)

Research paper thumbnail of Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility

G3 (Bethesda, Md.), Apr 7, 2016

DNA transposons and retroviruses are important transgenic tools for genome engineering. An import... more DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our finding...

Research paper thumbnail of Chamber Specific Gene Expression Landscape of the Zebrafish Heart

PLOS ONE, 2016

The organization of structure and function of cardiac chambers in vertebrates is defined by chamb... more The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers-atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis.

Research paper thumbnail of Wnt gene cluster in ventral ectoderm patterning of Drosophila embryo

Indian Journal of Genetics and Plant Breeding (The), 2015

Research paper thumbnail of Mutants dissecting development and behaviour in Drosophila

We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the ... more We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the IARI, spearheaded by the visionary insight of M. S. Swaminathan. The work started with the study of indirect effect of radiation and the synergistic interaction of physical and chemical mutagens on chromosomal and genetic changes. This paved the way for the study of single gene mutants in dissecting developmental and behavioural processes. New genes discovered by us have been shown to encode conserved cell signalling molecules controlling developmental and behavioural pathways. With the complete sequencing of the Drosophila genome, in the year 2000, mounting evidence for the homology between Drosophila and human genes controlling genetic disorders became available. This has led to the fly becoming an indispensable tool for studying human diseases as well as a model to test for drugs and pharmaceuticals against human diseases and complex behavioural processes. For example wingless in Drosophila belongs to the conserved Wnt gene family and aberrant WNT signalling is linked to a range of human diseases, most notably cancer. Inhibition as well as activation of WNT signalling form the basis of an effective therapy for some cancers as well as several other clinical conditions. Recent experiments have shown that WNTs might also normally participate in self-renewal, proliferation or differentiation of stem cells and altering WNT signalling might be beneficial to the use of stem cells for therapeutic means. Likewise, the stambhA mutant of Drosophila which was discovered for its temperature-dependent paralytic behaviour is the fly homologue of Phospholipase Cβ β. Phospholipase C mediated G protein signalling plays a central role in vital processes controlling epilepsy, vision, taste, and olfaction in animals. Proteins of the G-signalling pathway are of intense research interest since many human diseases involve defects in G-protein signalling pathways. In fact, approximately 50% of the drugs used in clinical medicine target cellular pathways containing G-protein signalling elements. The detailed study of PLC-dependent G protein signalling in Drosophila is bound to throw light on the role of G protein-mediated biological functions and on similar genes and their functions in human diseases.

Research paper thumbnail of Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 2012

Bemisia tabaci is the major vector pest of agricultural crops all over the world. In this study w... more Bemisia tabaci is the major vector pest of agricultural crops all over the world. In this study we report the different bacterial endosymbionts associated with B. tabaci sampled from 14 different locations in North India. Using 16S rDNA clone library sequences we were able to identify Portiera, the primary endosymbiont of B. tabaci, and other secondary endosymbionts like Cardinium, Wolbachia, Rickettsia and Arsenophonus. Along with these we also detected Bacillus, Enterobacter, Paracoccus and Acinetobacter. These secondary endosymbionts were not uniformly distributed in all the locations. Phylogenetic analysis of 16S rDNA sequences of Cardinium, Wolbachia, Rickettsia and Arsenophonus showed that each of these bacteria form a separate cluster when compared to their respective counterparts from other parts of the world. MtCO1 gene based phylogenetic analysis showed the presence of Asia I and Asia II genetic groups of B. tabaci in N. India. The multiple correspondence analyses showed n...

Research paper thumbnail of Dynamic Expression of Long Non-Coding RNAs (lncRNAs) in Adult Zebrafish

PLoS ONE, 2013

Long non-coding RNAs (lncRNA) represent an assorted class of transcripts having little or no prot... more Long non-coding RNAs (lncRNA) represent an assorted class of transcripts having little or no protein coding capacity and have recently gained importance for their function as regulators of gene expression. Molecular studies on lncRNA have uncovered multifaceted interactions with protein coding genes. It has been suggested that lncRNAs are an additional layer of regulatory switches involved in gene regulation during development and disease. LncRNAs expressing in specific tissues or cell types during adult stages can have potential roles in form, function, maintenance and repair of tissues and organs. We used RNA sequencing followed by computational analysis to identify tissue restricted lncRNA transcript signatures from five different tissues of adult zebrafish. The present study reports 442 predicted lncRNA transcripts from adult zebrafish tissues out of which 419 were novel lncRNA transcripts. Of these, 77 lncRNAs show predominant tissue restricted expression across the five major tissues investigated. Adult zebrafish brain expressed the largest number of tissue restricted lncRNA transcripts followed by cardiovascular tissue. We also validated the tissue restricted expression of a subset of lncRNAs using independent methods. Our data constitute a useful genomic resource towards understanding the expression of lncRNAs in various tissues in adult zebrafish. Our study is thus a starting point and opens a way towards discovering new molecular interactions of gene expression within the specific adult tissues in the context of maintenance of organ form and function.

Research paper thumbnail of Short Stories on Zebrafish Long Noncoding RNAs

Zebrafish, 2014

The recent re-annotation of the transcriptome of human and other model organisms, using next-gene... more The recent re-annotation of the transcriptome of human and other model organisms, using next-generation sequencing approaches, has unravelled a hitherto unknown repertoire of transcripts that do not have a potential to code for proteins. These transcripts have been largely classified into an amorphous class popularly known as long noncoding RNAs (lncRNA). This discovery of lncRNAs in human and other model systems have added a new layer to the understanding of gene regulation at the transcriptional and post-transcriptional levels. In recent years, three independent studies have discovered a number of lncRNAs expressed in different stages of zebrafish development and adult tissues using a high-throughput RNA sequencing approach, significantly adding to the repertoire of genes known in zebrafish. A subset of these transcripts also shows distinct and specific spatiotemporal patterns of gene expression, pointing to a tight regulatory control and potential functional roles in development, organogenesis, and/ or homeostasis. This review provides an overview of the lncRNAs in zebrafish and discusses how their discovery could provide new insights into understanding biology, explaining mutant phenotypes, and helping in potentially modeling disease processes.

Research paper thumbnail of Diagnostic and Prognostic Utility of a DNA Hypermethylated Gene Signature in Prostate Cancer

PLoS ONE, 2014

We aimed to identify a prostate cancer DNA hypermethylation microarray signature (denoted as PHYM... more We aimed to identify a prostate cancer DNA hypermethylation microarray signature (denoted as PHYMA) that differentiates prostate cancer from benign prostate hyperplasia (BPH), high from low-grade and lethal from non-lethal cancers. This is a non-randomized retrospective study in 111 local Asian men (87 prostate cancers and 24 BPH) treated from 1995 to 2009 in our institution. Archival prostate epithelia were laser-capture microdissected and genomic DNA extracted and bisulfiteconverted. Samples were profiled using Illumina GoldenGate Methylation microarray, with raw data processed by GenomeStudio. A classification model was generated using support vector machine, consisting of a 55-probe DNA methylation signature of 46 genes. The model was independently validated on an internal testing dataset which yielded cancer detection sensitivity and specificity of 95.3% and 100% respectively, with overall accuracy of 96.4%. Second validation on another independent western cohort yielded 89.8% sensitivity and 66.7% specificity, with overall accuracy of 88.7%. A PHYMA score was developed for each sample based on the state of methylation in the PHYMA signature. Increasing PHYMA score was significantly associated with higher Gleason score and Gleason primary grade. Men with higher PHYMA scores have poorer survival on univariate (p = 0.0038, HR = 3.89) and multivariate analyses when controlled for (i) clinical stage (p = 0.055, HR = 2.57), and (ii) clinical stage and Gleason score (p = 0.043, HR = 2.61). We further performed bisulfite genomic sequencing on 2 relatively unknown genes to demonstrate robustness of the assay results. PHYMA is thus a signature with high sensitivity and specificity for discriminating tumors from BPH, and has a potential role in early detection and in predicting survival.

Research paper thumbnail of A Multifunctional Mutagenesis System for Analysis of Gene Function in Zebrafish

Since the sequencing of the human reference genome, many human disease-related genes have been di... more Since the sequencing of the human reference genome, many human disease-related genes have been discovered. However, understanding the functions of all the genes in the genome remains a challenge. The biological activities of these genes are usually investigated in model organisms, such as mice and zebrafish. Large-scale mutagenesis screens to generate disruptive mutations are useful for identifying and understanding the activities of genes. Here, we report a multifunctional mutagenesis system in zebrafish using the maize Ds transposon. Integration of the Ds transposable element containing an mCherry reporter for protein trap events, and an EGFP reporter for enhancer trap events, produced a collection of transgenic lines marking distinct cell and tissue types, and mutagenized genes in the zebrafish genome by trapping and prematurely terminating endogenous protein coding sequences. We obtained 642 zebrafish lines with dynamic reporter gene expression. The characterized fish lines with specific expression patterns will be made available through the European Zebrafish Resource Center (EZRC), and a database of reporter expression is available online (http://fishtrap.warwick.ac.uk/). Our approach complements other efforts in zebrafish to facilitate functional genomic studies in this model of human development and disease.