Adriana Nivea Leao-Helder - Academia.edu (original) (raw)
Uploads
Papers by Adriana Nivea Leao-Helder
Fems Yeast Research, May 1, 2004
All in-text references underlined in blue are linked to publications on ResearchGate, letting you... more All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
Fems Yeast Research, Nov 1, 2005
We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradati... more We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradation in the methylotrophic yeast Hansenula polymorpha. A Hp-vam7 mutant was strongly affected in peroxisome degradation by selective macropexophagy as well as non-selective microautophagy. Deletion of Hp-Vam3p function had only a minor effect on peroxisome degradation processes. Both proteins were located at the vacuolar membrane, with Hp-Vam7p also having a partially cytosolic location. Previously, in bakerÕs yeast Vam3p and Vam7p have been demonstrated to be components of a t-SNARE complex essential for vacuole biogenesis. We speculate that the function of this complex in macropexophagy includes a role in membrane fusion processes between the outer membrane layer of sequestered peroxisomes and the vacuolar membrane. Our data suggest that Hp-Vam3p may be functionally redundant in peroxisome degradation. Remarkably, deletion of Hp-VAM7 also significantly affected peroxisome biogenesis and resulted in organelles with multiple, membrane-enclosed compartments. These morphological defects became first visible in cells that were in the mid-exponential growth phase of cultivation on methanol, and were correlated with accumulation of electron-dense extensions that were connected to mitochondria.
Journal of Biological Chemistry, 2003
FEMS Yeast Research, 2004
FEMS Yeast Research, 2005
We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradati... more We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradation in the methylotrophic yeast Hansenula polymorpha. A Hp-vam7 mutant was strongly affected in peroxisome degradation by selective macropexophagy as well as non-selective microautophagy. Deletion of Hp-Vam3p function had only a minor effect on peroxisome degradation processes. Both proteins were located at the vacuolar membrane, with Hp-Vam7p also having a partially cytosolic location. Previously, in bakerÕs yeast Vam3p and Vam7p have been demonstrated to be components of a t-SNARE complex essential for vacuole biogenesis. We speculate that the function of this complex in macropexophagy includes a role in membrane fusion processes between the outer membrane layer of sequestered peroxisomes and the vacuolar membrane. Our data suggest that Hp-Vam3p may be functionally redundant in peroxisome degradation. Remarkably, deletion of Hp-VAM7 also significantly affected peroxisome biogenesis and resulted in organelles with multiple, membrane-enclosed compartments. These morphological defects became first visible in cells that were in the mid-exponential growth phase of cultivation on methanol, and were correlated with accumulation of electron-dense extensions that were connected to mitochondria.
FEMS Yeast Research, 2003
FEBS Letters, 2004
Take-down policy If you believe that this document breaches copyright please contact us providing... more Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
FEMS Yeast Research, 2007
Fems Yeast Research, May 1, 2004
All in-text references underlined in blue are linked to publications on ResearchGate, letting you... more All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
Fems Yeast Research, Nov 1, 2005
We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradati... more We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradation in the methylotrophic yeast Hansenula polymorpha. A Hp-vam7 mutant was strongly affected in peroxisome degradation by selective macropexophagy as well as non-selective microautophagy. Deletion of Hp-Vam3p function had only a minor effect on peroxisome degradation processes. Both proteins were located at the vacuolar membrane, with Hp-Vam7p also having a partially cytosolic location. Previously, in bakerÕs yeast Vam3p and Vam7p have been demonstrated to be components of a t-SNARE complex essential for vacuole biogenesis. We speculate that the function of this complex in macropexophagy includes a role in membrane fusion processes between the outer membrane layer of sequestered peroxisomes and the vacuolar membrane. Our data suggest that Hp-Vam3p may be functionally redundant in peroxisome degradation. Remarkably, deletion of Hp-VAM7 also significantly affected peroxisome biogenesis and resulted in organelles with multiple, membrane-enclosed compartments. These morphological defects became first visible in cells that were in the mid-exponential growth phase of cultivation on methanol, and were correlated with accumulation of electron-dense extensions that were connected to mitochondria.
Journal of Biological Chemistry, 2003
FEMS Yeast Research, 2004
FEMS Yeast Research, 2005
We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradati... more We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradation in the methylotrophic yeast Hansenula polymorpha. A Hp-vam7 mutant was strongly affected in peroxisome degradation by selective macropexophagy as well as non-selective microautophagy. Deletion of Hp-Vam3p function had only a minor effect on peroxisome degradation processes. Both proteins were located at the vacuolar membrane, with Hp-Vam7p also having a partially cytosolic location. Previously, in bakerÕs yeast Vam3p and Vam7p have been demonstrated to be components of a t-SNARE complex essential for vacuole biogenesis. We speculate that the function of this complex in macropexophagy includes a role in membrane fusion processes between the outer membrane layer of sequestered peroxisomes and the vacuolar membrane. Our data suggest that Hp-Vam3p may be functionally redundant in peroxisome degradation. Remarkably, deletion of Hp-VAM7 also significantly affected peroxisome biogenesis and resulted in organelles with multiple, membrane-enclosed compartments. These morphological defects became first visible in cells that were in the mid-exponential growth phase of cultivation on methanol, and were correlated with accumulation of electron-dense extensions that were connected to mitochondria.
FEMS Yeast Research, 2003
FEBS Letters, 2004
Take-down policy If you believe that this document breaches copyright please contact us providing... more Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
FEMS Yeast Research, 2007