Agustín González - Academia.edu (original) (raw)
Uploads
Papers by Agustín González
Cell and Tissue Research, 1977
This report describes the distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in... more This report describes the distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of juvenile chinook salmon. TRH-positive cell bodies are observed in the preoptic region of the diencephalon, in the supracommissural nucleus of the ventral telencephalon, and in the internal cellular layer of the olfactory bulb. Immunoreactive fibers occur in the olfactory bulb, the dorsal and ventral telencephalon and were particularly extensive in hypothalamic regions. TRH-positive fibers also are observed in the optic tectum, posterior pituitary and the brainstem. The cell bodies in the preoptic area reside in the magnocellular preoptic nucleus. The position of these cell bodies along with the location of fibers in the hypothalamus and pituitary is consistent with the role of TRH as a hypothalamic releasing hormone. TRH-positive cell bodies also occur in the supracommissural nucleus of the ventral telencephalon and in the internal cellular layer of the olfactory bulb. The cell bodies in the olfactory bulb may account for some of the fibers in the telencephalon, as there are TRH fibers in the olfactory tracts. The presence of TRH-positive fibers with bouton-like swellings raise the possibility that the TRH peptide may act as a central neurotransmitter of neuromodulator. The results of this study suggest that TRH functions as a modulator of the pituitary activity in salmonids and that TRH is used as a transmitter or modulator in the olfactory system. The presence of TRH-positive somata in the olfactory bulb and ventral telencephalon provides new insights into the comparative anatomy of the salmon telencephalon.
Brain, Behavior and Evolution, 2011
The analysis of the distribution of the calbindin-D28k and calretinin immunoreactive (CBir and CR... more The analysis of the distribution of the calbindin-D28k and calretinin immunoreactive (CBir and CRir) systems recently described in the brain of anuran and urodele amphibians was very useful for the interpretation of many otherwise indistinct brain regions and cell masses. In the present study we have followed a similar approach to investigate the distribution of CBir and CRir cell bodies and fibers in the brain of Dermophis mexicanus, a member of the much neglected third amphibian order of gymnophionans. The pattern of distribution obtained showed particular characteristics in Dermophis, such as the existence of abundant CRir elements in the olfactory bulbs and CBir and CRir cell populations in pallial areas. The distinct distribution of the two proteins allowed the tentative identification of currently described subregions, mainly in the amygdaloid complex and hypothalamic areas. The analysis of the diencephalon and brainstem distribution framed in the neuromeric model highlighted ...
Cell and Tissue Research, 1977
This report describes the distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in... more This report describes the distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of juvenile chinook salmon. TRH-positive cell bodies are observed in the preoptic region of the diencephalon, in the supracommissural nucleus of the ventral telencephalon, and in the internal cellular layer of the olfactory bulb. Immunoreactive fibers occur in the olfactory bulb, the dorsal and ventral telencephalon and were particularly extensive in hypothalamic regions. TRH-positive fibers also are observed in the optic tectum, posterior pituitary and the brainstem. The cell bodies in the preoptic area reside in the magnocellular preoptic nucleus. The position of these cell bodies along with the location of fibers in the hypothalamus and pituitary is consistent with the role of TRH as a hypothalamic releasing hormone. TRH-positive cell bodies also occur in the supracommissural nucleus of the ventral telencephalon and in the internal cellular layer of the olfactory bulb. The cell bodies in the olfactory bulb may account for some of the fibers in the telencephalon, as there are TRH fibers in the olfactory tracts. The presence of TRH-positive fibers with bouton-like swellings raise the possibility that the TRH peptide may act as a central neurotransmitter of neuromodulator. The results of this study suggest that TRH functions as a modulator of the pituitary activity in salmonids and that TRH is used as a transmitter or modulator in the olfactory system. The presence of TRH-positive somata in the olfactory bulb and ventral telencephalon provides new insights into the comparative anatomy of the salmon telencephalon.
Brain, Behavior and Evolution, 2011
The analysis of the distribution of the calbindin-D28k and calretinin immunoreactive (CBir and CR... more The analysis of the distribution of the calbindin-D28k and calretinin immunoreactive (CBir and CRir) systems recently described in the brain of anuran and urodele amphibians was very useful for the interpretation of many otherwise indistinct brain regions and cell masses. In the present study we have followed a similar approach to investigate the distribution of CBir and CRir cell bodies and fibers in the brain of Dermophis mexicanus, a member of the much neglected third amphibian order of gymnophionans. The pattern of distribution obtained showed particular characteristics in Dermophis, such as the existence of abundant CRir elements in the olfactory bulbs and CBir and CRir cell populations in pallial areas. The distinct distribution of the two proteins allowed the tentative identification of currently described subregions, mainly in the amygdaloid complex and hypothalamic areas. The analysis of the diencephalon and brainstem distribution framed in the neuromeric model highlighted ...