Ahmed emara - Academia.edu (original) (raw)
Uploads
Papers by Ahmed emara
Crystals
A broadband thin film plasmonic metamaterial absorber nanostructure that operates in the frequenc... more A broadband thin film plasmonic metamaterial absorber nanostructure that operates in the frequency range from 100 GHz to 1000 GHz is introduced and analyzed in this paper. The structure consists of three layers: a 200 nm thick gold layer that represents the ground plate (back reflector), a dielectric substrate, and an array of metallic nanorods. A parametric study is conducted to optimize the structure based on its absorption property using different materials, gold (Au), aluminum (Al), and combined Au, and Al for the nanorods. The effect of different dielectric substrates on the absorption is examined using silicon dioxide (SiO2), aluminum oxide (Al2O3), titanium dioxide (TiO2), and a combination of these three materials. This was followed by the analysis of the effect of the distribution of Al, and Au nanorods and their dimensions on the absorption. The zinc oxide (ZnO) layer is added as a substrate on top of the Au layer to enhance the absorption in the microwave range. The optim...
Photonics
A low-cost Si-based optical nano-sensor that monitors traditional water pollutants is introduced ... more A low-cost Si-based optical nano-sensor that monitors traditional water pollutants is introduced in this paper. The introduced sensor works in the near-infrared region, 900 nm to 2500 nm spectral range. The proposed structure consists of a Si layer with an optimized thickness of 300 nm on the top of the Al layer acting as a back reflector. On the top of the Si layer, the water pollutants are modeled as nanoparticle materials of different sizes. The finite difference time domain method is utilized to optimize the thicknesses of the Si layer by analyzing the optical light absorption considering different Si layer thicknesses and different pollutant nanoparticles’ sizes. Different interpolation techniques, including polynomials with various degrees and locally weighted smoothing quadratic regression, are used to find the best fitting model representing the simulated data points with goodness of fit analysis. Three features are proposed to identify the water pollutant with its size, pea...
Applied Optics, 2016
This paper is devoted to the development of a steady-state behavior of a quantum dot-semiconducto... more This paper is devoted to the development of a steady-state behavior of a quantum dot-semiconductor optical amplifier (QD-SOA). The investigated performance characteristics cover a wide range that includes material gain coefficient, spatial distribution of the occupation probabilities, fiber to fiber gain, gain spectrum as a function of the bias current, relaxation time, and capture time. A set of traveling-wave equations is used to model the signal and spontaneous photons along the device active region. The obtained results indicate a high gain that reaches 34 dB for an InAs/InGaAsP/InP-based QD-SOA, with a corresponding device length of 4 mm. The obtained signal-to-noise ratio is larger than 75 dB for all input powers without using an output filter.
… , 2001. NRSC 2001. …, 2001
Crystals
A broadband thin film plasmonic metamaterial absorber nanostructure that operates in the frequenc... more A broadband thin film plasmonic metamaterial absorber nanostructure that operates in the frequency range from 100 GHz to 1000 GHz is introduced and analyzed in this paper. The structure consists of three layers: a 200 nm thick gold layer that represents the ground plate (back reflector), a dielectric substrate, and an array of metallic nanorods. A parametric study is conducted to optimize the structure based on its absorption property using different materials, gold (Au), aluminum (Al), and combined Au, and Al for the nanorods. The effect of different dielectric substrates on the absorption is examined using silicon dioxide (SiO2), aluminum oxide (Al2O3), titanium dioxide (TiO2), and a combination of these three materials. This was followed by the analysis of the effect of the distribution of Al, and Au nanorods and their dimensions on the absorption. The zinc oxide (ZnO) layer is added as a substrate on top of the Au layer to enhance the absorption in the microwave range. The optim...
Photonics
A low-cost Si-based optical nano-sensor that monitors traditional water pollutants is introduced ... more A low-cost Si-based optical nano-sensor that monitors traditional water pollutants is introduced in this paper. The introduced sensor works in the near-infrared region, 900 nm to 2500 nm spectral range. The proposed structure consists of a Si layer with an optimized thickness of 300 nm on the top of the Al layer acting as a back reflector. On the top of the Si layer, the water pollutants are modeled as nanoparticle materials of different sizes. The finite difference time domain method is utilized to optimize the thicknesses of the Si layer by analyzing the optical light absorption considering different Si layer thicknesses and different pollutant nanoparticles’ sizes. Different interpolation techniques, including polynomials with various degrees and locally weighted smoothing quadratic regression, are used to find the best fitting model representing the simulated data points with goodness of fit analysis. Three features are proposed to identify the water pollutant with its size, pea...
Applied Optics, 2016
This paper is devoted to the development of a steady-state behavior of a quantum dot-semiconducto... more This paper is devoted to the development of a steady-state behavior of a quantum dot-semiconductor optical amplifier (QD-SOA). The investigated performance characteristics cover a wide range that includes material gain coefficient, spatial distribution of the occupation probabilities, fiber to fiber gain, gain spectrum as a function of the bias current, relaxation time, and capture time. A set of traveling-wave equations is used to model the signal and spontaneous photons along the device active region. The obtained results indicate a high gain that reaches 34 dB for an InAs/InGaAsP/InP-based QD-SOA, with a corresponding device length of 4 mm. The obtained signal-to-noise ratio is larger than 75 dB for all input powers without using an output filter.
… , 2001. NRSC 2001. …, 2001