Ahmet Peker - Academia.edu (original) (raw)

Ahmet Peker

Uploads

Papers by Ahmet Peker

Research paper thumbnail of Karişik Modelli̇ U-Ti̇pi̇ Montaj Hatlarinda Hat Dengeleme Ve Model Siralama Problemleri̇ İçi̇n Yeni̇ Bi̇r Sezgi̇sel Yaklaşim

Istanbul University - DergiPark, 2007

Benzer ürünlerin veya bir ürünün farklı modellerinin aynı üretim hattı boyunca üretilmesine karış... more Benzer ürünlerin veya bir ürünün farklı modellerinin aynı üretim hattı boyunca üretilmesine karışık modelli üretim adı verilmektedir. Müşteri istek ve ihtiyaçlarına zamanında cevap verebilmek amacıyla, tam zamanında üretim sisteminde kullanılan U-tipi montaj hatlarında karışık modelli üretim gerçekleştirilmektedir. Karışık modelli U-tipi montaj hattının (KMUM) etkinliği, karışık modelli U-tipi montaj hatlarında hat dengeleme (KMUM-D) problemine ve karışık modelli U-tipi montaj hatlarında model sıralama (KMUM-S) problemine bulunan çözümlere bağlıdır. Bu çalışmada, ihtiyaç duyulacak istasyon sayısını en küçükleme amaçlanarak karışık modelli U-tipi montaj hatlarında hat dengeleme ve model sıralama (KMUM-D/S) problemlerinin eşzamanlı çözümü için tabu araması algoritması tabanlı yeni bir sezgisel yaklaşım önerilmiştir. Önerilen sezgisel yaklaşım literatürde yer alan karma tamsayılı programlama modeli (KTPM) çözümleriyle karşılaştırılmıştır. Deney sonuçları önerilen sezgisel yaklaşımın etkin sonuçlar verdiğini göstermektedir. Anahtar Kelimeler: U tipi montaj hatları, karışık modelli üretim, tabu araması algoritması, hat dengeleme, model sıralama.

Research paper thumbnail of An approach for balancing and sequencing mixed-model JIT U-lines

The International Journal of Advanced Manufacturing Technology, 2006

A successful implementation of a mixed-model U-line requires solutions for balancing and sequenci... more A successful implementation of a mixed-model U-line requires solutions for balancing and sequencing problems. This study proposes an approach for simultaneously solving the balancing and sequencing problems of mixed-model U-lines. The primary goal of the proposed approach is to minimize the number of workstations required on the line (Type I). To meet this aim, the proposed approach uses such a

Research paper thumbnail of Balancing and sequencing mixed-model just-in-time U-lines with multiple objectives

Applied Mathematics and Computation, 2007

This study deals with the mixed-model U-lines utilized in just-in-time (JIT) production systems. ... more This study deals with the mixed-model U-lines utilized in just-in-time (JIT) production systems. Successful implementations of mixed-model U-lines requires solutions to two important problems called line balancing and model sequencing. In terms of some balance-dependent performance measures the effectiveness of a mixed-model U-line can be increased by solving line balancing and model sequencing problems simultaneously. However, this may lead to inefficient values of sequence-dependent performance measures. Hence, increasing the effectiveness of a mixed-model U-line requires balancing and sequencing problems that be dealt with multiple objectives. Balancing and sequencing mixed-model U-lines with multiple objectives has not been considered in the literature to date. In this study, a multi-objective approach for balancing and sequencing mixed-model U-lines to simultaneously minimize the absolute deviations of workloads across workstations, part usage rate, and cost of setups is presented. To increase the performance of the proposed algorithm, a newly developed neighbourhood generation method is also employed. Since the performance measures considered in the study are conflicting with each other, the proposed algorithm suggests much flexibility and more realistic results to decision makers. Solution methodology is illustrated using an example and a two-stage comprehensive experimental study is conducted to determine the effective values of algorithm parameters and investigate the relationships between performance measures. Results show that the proposed approach is more realistic than the limited number of existing methodologies. The proposed approach is also extended to consider the stochastic completion times of tasks.

Research paper thumbnail of Karişik Modelli̇ U-Ti̇pi̇ Montaj Hatlarinda Hat Dengeleme Ve Model Siralama Problemleri̇ İçi̇n Yeni̇ Bi̇r Sezgi̇sel Yaklaşim

Istanbul University - DergiPark, 2007

Benzer ürünlerin veya bir ürünün farklı modellerinin aynı üretim hattı boyunca üretilmesine karış... more Benzer ürünlerin veya bir ürünün farklı modellerinin aynı üretim hattı boyunca üretilmesine karışık modelli üretim adı verilmektedir. Müşteri istek ve ihtiyaçlarına zamanında cevap verebilmek amacıyla, tam zamanında üretim sisteminde kullanılan U-tipi montaj hatlarında karışık modelli üretim gerçekleştirilmektedir. Karışık modelli U-tipi montaj hattının (KMUM) etkinliği, karışık modelli U-tipi montaj hatlarında hat dengeleme (KMUM-D) problemine ve karışık modelli U-tipi montaj hatlarında model sıralama (KMUM-S) problemine bulunan çözümlere bağlıdır. Bu çalışmada, ihtiyaç duyulacak istasyon sayısını en küçükleme amaçlanarak karışık modelli U-tipi montaj hatlarında hat dengeleme ve model sıralama (KMUM-D/S) problemlerinin eşzamanlı çözümü için tabu araması algoritması tabanlı yeni bir sezgisel yaklaşım önerilmiştir. Önerilen sezgisel yaklaşım literatürde yer alan karma tamsayılı programlama modeli (KTPM) çözümleriyle karşılaştırılmıştır. Deney sonuçları önerilen sezgisel yaklaşımın etkin sonuçlar verdiğini göstermektedir. Anahtar Kelimeler: U tipi montaj hatları, karışık modelli üretim, tabu araması algoritması, hat dengeleme, model sıralama.

Research paper thumbnail of An approach for balancing and sequencing mixed-model JIT U-lines

The International Journal of Advanced Manufacturing Technology, 2006

A successful implementation of a mixed-model U-line requires solutions for balancing and sequenci... more A successful implementation of a mixed-model U-line requires solutions for balancing and sequencing problems. This study proposes an approach for simultaneously solving the balancing and sequencing problems of mixed-model U-lines. The primary goal of the proposed approach is to minimize the number of workstations required on the line (Type I). To meet this aim, the proposed approach uses such a

Research paper thumbnail of Balancing and sequencing mixed-model just-in-time U-lines with multiple objectives

Applied Mathematics and Computation, 2007

This study deals with the mixed-model U-lines utilized in just-in-time (JIT) production systems. ... more This study deals with the mixed-model U-lines utilized in just-in-time (JIT) production systems. Successful implementations of mixed-model U-lines requires solutions to two important problems called line balancing and model sequencing. In terms of some balance-dependent performance measures the effectiveness of a mixed-model U-line can be increased by solving line balancing and model sequencing problems simultaneously. However, this may lead to inefficient values of sequence-dependent performance measures. Hence, increasing the effectiveness of a mixed-model U-line requires balancing and sequencing problems that be dealt with multiple objectives. Balancing and sequencing mixed-model U-lines with multiple objectives has not been considered in the literature to date. In this study, a multi-objective approach for balancing and sequencing mixed-model U-lines to simultaneously minimize the absolute deviations of workloads across workstations, part usage rate, and cost of setups is presented. To increase the performance of the proposed algorithm, a newly developed neighbourhood generation method is also employed. Since the performance measures considered in the study are conflicting with each other, the proposed algorithm suggests much flexibility and more realistic results to decision makers. Solution methodology is illustrated using an example and a two-stage comprehensive experimental study is conducted to determine the effective values of algorithm parameters and investigate the relationships between performance measures. Results show that the proposed approach is more realistic than the limited number of existing methodologies. The proposed approach is also extended to consider the stochastic completion times of tasks.

Log In