Alaa Salah - Academia.edu (original) (raw)
Papers by Alaa Salah
Sustainability
Water shortage, human population increase, and lack of food resources have directed societies tow... more Water shortage, human population increase, and lack of food resources have directed societies towards sustainable energy and water resources, especially for agriculture. While open agriculture requires a massive amount of water and energy, the requirements of horticultural systems can be controlled to provide standard conditions for the plants to grow, with significant decrease in water consumption. A greenhouse is a transparent indoor environment used for horticulture, as it allows for reasonable control of the microclimate conditions (e.g., temperature, air velocity, rate of ventilation, and humidity). While such systems create a controlled environment for the plants, the greenhouses need ventilation to provide fresh air. In order to have a sustainable venting mechanism, a novel solution has been proposed in this study providing a naturally ventilating system required for the plants, while at the same time reducing the energy requirements for cooling or other forced ventilation te...
Sustainability
Water shortage, human population increase, and lack of food resources have directed societies tow... more Water shortage, human population increase, and lack of food resources have directed societies towards sustainable energy and water resources, especially for agriculture. While open agriculture requires a massive amount of water and energy, the requirements of horticultural systems can be controlled to provide standard conditions for the plants to grow, with significant decrease in water consumption. A greenhouse is a transparent indoor environment used for horticulture, as it allows for reasonable control of the microclimate conditions (e.g., temperature, air velocity, rate of ventilation, and humidity). While such systems create a controlled environment for the plants, the greenhouses need ventilation to provide fresh air. In order to have a sustainable venting mechanism, a novel solution has been proposed in this study providing a naturally ventilating system required for the plants, while at the same time reducing the energy requirements for cooling or other forced ventilation te...
Agronomy
This study evaluated the effect of phosphorus and potassium (PK) fertilizer levels and foliar sea... more This study evaluated the effect of phosphorus and potassium (PK) fertilizer levels and foliar seaweed extract on early and total yield productivity and the growth of globe artichoke plants. Field experiments were conducted over two seasons on loamy–clay soil at the vegetable research farm, of the Faculty of Agriculture, Alexandria University, Egypt. Fertilizer levels of 0, 25, 50 and 75 mL L−1, and seaweed extract concentrations of 0, 5 and 10 mg L−1, individually and in combination, were used. Globe artichoke plants treated with PK liquid fertilizer, with and without seaweed extract, showed critical increases in growth (plant height and number of leaves per plant as well as foliage dry weight), yield, and some chemical constituents compared to untreated plants. The PK3 fertilizer level and 10 mL L−1 seaweed extract as a foliar spray showed greater effects than other combinations.
Agronomy
This work investigates an experimental study for using low-cost and eco-friendly oils to increase... more This work investigates an experimental study for using low-cost and eco-friendly oils to increase the shelf life of strawberry fruit. Three natural oils were used: (i) Eucalyptus camaldulensis var obtuse, (ii) Mentha piperita green aerial parts essential oils (EOs), and (iii) Moringa oleifera seeds n-hexane fixed oil (FO). Furthermore, a mixture of EOs from E. camaldulensis var obtusa and M. piperita (1/1 v/v) was used. The treated fruits were stored at 5 °C and 90% relative humidity (RH) for 18 days. HPLC was used to analyse the changes in phenolic compounds during the storage periods. The effects of biofumigation through a slow-release diffuser of EOs (E. camaldulensis var obtusa and M. piperita), or by coating with M. oleifera FO, were evaluated in terms of control of post-harvest visual and chemical quality of strawberry fruits. The post-harvest resistance of strawberry fruits to Botrytis cinerea fungal infection was also evaluated. As a result, the EO treatments significantly r...
This study presents the effective performance of a sustainable solar driven agricultural greenhou... more This study presents the effective performance of a sustainable solar driven agricultural greenhouse (GH) self-reliant of energy and irrigation water via desalination. The GH is furnished with infrastructures such as; (i) - an inlet condenser for cool air exchanger and partial water production, (ii) - an internal cavity for crop production (iii) - roof transparent solar distillers (TSD) for solar desalination and partial shading and (iv)- a thermal chimney for natural air ventilation. A mathematical model is developed to predict the performance of the sustainable GH system. A coupled approach of MATLAB/Simulink and computational fluid dynamics (CFD) based on three simulation models were used: solar radiation, thermal energy balance and CFD model. Two parametric studies were carried out. The first one analyzed the effects of different air velocity on the system thermal performance and natural ventilation rate. The second study assessed the effects of different covering material on the...
Sustainability
Cultivation in open fields mainly depends on the location and time of farming, which itself highl... more Cultivation in open fields mainly depends on the location and time of farming, which itself highly depends on the quality and quantity of water for irrigation, weather conditions and soil characteristics. Water resources are highly dependent on the limited freshwater resources from the groundwater system, or rainwater. Countries in MENA (the Middle East and North Africa) rely mostly on desalination technologies for agriculture, due to water scarcity. Therefore, greenhouse (GH) agriculture can be developed to succeed in dealing with the water scarcity and provide sufficient sources of agricultural products as a sustainable solution. These indoor agriculture facilities, which are enclosed by transparent covers, can produce different sources of fruits and vegetables, using a controlled amount of water. By reducing the exchange rate of air with the outside environment, which is known as the confinement effects, greenhouses generate a suitable environment for the plants to grow under tra...
Water
The need for sustainable desalination arises from fast-occurring global warming and intensifying ... more The need for sustainable desalination arises from fast-occurring global warming and intensifying droughts due to increasing temperatures, particularly in the Middle East and North African (MENA) regions. Lack of water resources has meant that the countries in these regions have had to desalinate seawater through different sustainable technologies for food supplies and agricultural products. Greenhouses (GH) are used to protect crops from harsh climates, creating a controlled environment requiring less water. In order to have a sustainable resilient GH, a zero-liquid-discharge system (ZLD) was developed by using solar still (SS) desalination techniques, humidification-dehumidification (HDH), and rainwater harvesting. An experiment was designed and carried out by designing and manufacturing a wick type solar still, together with an HDH system, implemented into a GH. Using a pyrometer, the solar intensity was recorded, while the microclimate conditions (temperature and relative humidit...
Energies
Solar-powered desalination is a sustainable solution for countries experiencing water scarcity. S... more Solar-powered desalination is a sustainable solution for countries experiencing water scarcity. Several studies have presented different solutions to provide cleaner production in desalination systems. Parabolic trough collector (PTC) is one of these solutions that has proven to be superior among solar concentrators. Furthermore, a number of studies have investigated the use of PTC for distillation of saline water in response to water scarcity. In this study, a modified PTC model was developed, in which the heat exchanger was replaced by a condensation tube to reduce the energy consumption, and a black layer was introduced to the surface of the receiver to enhance its absorptance. As a reference case, the system productivity according to average solar intensities in Zagazig, located at 30°34′N 31°30′E in the North East of Egypt, is estimated. The results indicated that the maximum production rate that can be attained is 1.72 kg/h. Then, the structure of the system is evaluated with ...
Energies
In this study, an analysis is carried out to determine the optimal application of multiple renewa... more In this study, an analysis is carried out to determine the optimal application of multiple renewable energy resources, namely wind and solar, to provide electricity requirements for green smart cities and environments. This was done to determine the potential of renewable energy to provide clean, economically viable energy for the case study of Zagazig, located at 30°34′ N 31°30′ E in the North East of Egypt. The relevant data surrounding the production of energy were collected, including the meteorological data from NASA, and specifications regarding renewable resources including solar panels, wind turbines, and storage batteries. Then a hybrid model was constructed consisting of Photovoltaics (PV) panels, wind turbines, a converter, and storage batteries. Once the model was constructed, meteorological data were added alongside average daily demand and cost of electricity per kWh. The optimal solution for Zagazig consisted of 181,000 kW of solar panels feeding directly into the gri...
Pathogens
The West Bank can be considered as a high-risk area for Legionella prevalence in drinking water d... more The West Bank can be considered as a high-risk area for Legionella prevalence in drinking water due to high ambient temperature, intermittent water supply, frequent pressure loss, and storage of drinking water in roof containers. To assess occurrence of Legionella species, especially L. pneumophila, in the drinking water of the West Bank, the drinking water distribution systems of eight hospitals were sampled over a period of 2.3 years covering the seasonal cycle and the major geographic regions. To gain insight into potential environmental drivers, a set of physico-chemical and microbiological parameters was recorded. Sampling included drinking water and biofilm analyzed by culture and PCR-based methods. Cultivation led to the isolation of 180 strains of L. pneumophila that were genotyped by Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA). Surprisingly, the abundance of culturable L. pneumophila was low in drinking water of the sampling sites, with only three out of ei...
Energies
Solar-powered desalination is a sustainable solution for countries experiencing water scarcity. S... more Solar-powered desalination is a sustainable solution for countries experiencing water scarcity. Several studies have presented different solutions to provide cleaner production in desalination systems. Parabolic trough collector (PTC) is one of these solutions that has proven to be superior among solar concentrators. Furthermore, a number of studies have investigated the use of PTC for distillation of saline water in response to water scarcity. In this study, a modified PTC model was developed, in which the heat exchanger was replaced by a condensation tube to reduce the energy consumption, and a black layer was introduced to the surface of the receiver to enhance its absorptance. As a reference case, the system productivity according to average solar intensities in Zagazig, located at 30°34′N 31°30′E in the North East of Egypt, is estimated. The results indicated that the maximum production rate that can be attained is 1.72 kg/h. Then, the structure of the system is evaluated with ...
Water
The need for sustainable desalination arises from fast-occurring global warming and intensifying ... more The need for sustainable desalination arises from fast-occurring global warming and intensifying droughts due to increasing temperatures, particularly in the Middle East and North African (MENA) regions. Lack of water resources has meant that the countries in these regions have had to desalinate seawater through different sustainable technologies for food supplies and agricultural products. Greenhouses (GH) are used to protect crops from harsh climates, creating a controlled environment requiring less water. In order to have a sustainable resilient GH, a zero-liquid-discharge system (ZLD) was developed by using solar still (SS) desalination techniques, humidification-dehumidification (HDH), and rainwater harvesting. An experiment was designed and carried out by designing and manufacturing a wick type solar still, together with an HDH system, implemented into a GH. Using a pyrometer, the solar intensity was recorded, while the microclimate conditions (temperature and relative humidit...
Energies
In this study, an analysis is carried out to determine the optimal application of multiple renewa... more In this study, an analysis is carried out to determine the optimal application of multiple renewable energy resources, namely wind and solar, to provide electricity requirements for green smart cities and environments. This was done to determine the potential of renewable energy to provide clean, economically viable energy for the case study of Zagazig, located at 30°34′ N 31°30′ E in the North East of Egypt. The relevant data surrounding the production of energy were collected, including the meteorological data from NASA, and specifications regarding renewable resources including solar panels, wind turbines, and storage batteries. Then a hybrid model was constructed consisting of Photovoltaics (PV) panels, wind turbines, a converter, and storage batteries. Once the model was constructed, meteorological data were added alongside average daily demand and cost of electricity per kWh. The optimal solution for Zagazig consisted of 181,000 kW of solar panels feeding directly into the gri...
Sustainability
Cultivation in open fields mainly depends on the location and time of farming, which itself highl... more Cultivation in open fields mainly depends on the location and time of farming, which itself highly depends on the quality and quantity of water for irrigation, weather conditions and soil characteristics. Water resources are highly dependent on the limited freshwater resources from the groundwater system, or rainwater. Countries in MENA (the Middle East and North Africa) rely mostly on desalination technologies for agriculture, due to water scarcity. Therefore, greenhouse (GH) agriculture can be developed to succeed in dealing with the water scarcity and provide sufficient sources of agricultural products as a sustainable solution. These indoor agriculture facilities, which are enclosed by transparent covers, can produce different sources of fruits and vegetables, using a controlled amount of water. By reducing the exchange rate of air with the outside environment, which is known as the confinement effects, greenhouses generate a suitable environment for the plants to grow under tra...
Renewable Energy and Sustainable Development, Mar 20, 2017
In Egyptian desert, growing plants is difficult due to harsh climate (hot at the daytime and cold... more In Egyptian desert, growing plants is difficult due to harsh climate (hot at the daytime and cold at the night), infertile soil, low average rainfall and lack of fresh water for irrigation purposes. A set of simple transparent solar stills are integrated with a new solar driven agriculture greenhouse (GH). The stills are placed at the GH roof to use the extra solar radiation (above that required for plant photosynthesis process) for water desalination. In addition to water desalination concept the solar still units even reduce the cooling load during the daytime. A net of aluminum metal coated with black colour is placed on the base of the solar still units to raise the water temperature (enhance desalination process) and provide partially shading for the GH. Using aluminum net decreases also the number of solar still units required to produce the required amount of GH fresh water leading to a significant cost reduction.. Therefore, this technique can be used for the application where a higher VTR is essential. The main objectives of this work are sizing of the aluminum net, spacing between solar still units to obtain the threshold of plant requirements. Also fresh water production and greenhouse climatic conditions that plant needs (temperature, relative humidity, air velocity and amount of oxygen) are simulated. Numerical simulation was carried out for the hottest day of Borg Elarab, Alexandria (Egypt).
XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY
Agricultural greenhouse (GH) systems provides suitable microclimatic environment for maximum plan... more Agricultural greenhouse (GH) systems provides suitable microclimatic environment for maximum plant growth (quality and quantity) and protect plants from adverse atmospheric agents using appropriate technology. This will influence and ultimately modifies the crop microclimate, thereby improving the plants growing condition, improving their quality and permitting high yields; thus, lengthening the market availability of the products. This paper describes the basic operation of a sustainable agricultural greenhouse suitable for the mild winter climate of the Mediterranean region for air heating, solar energy utilization, water desalination and plant production. The numerical analysis of the dynamic model for determination of various GH performance was done for a typical winter day of December of Borg El-Arab, Alexandria Egypt. A GH heating control strategy based on MATLAB and CFD simulations for energy saving, suitable microclimate maintenance and better performance of the GH systems were studied. The GH transient performance and uncertain microclimate conditions depend on air temperature, relative humidity, carbon dioxide concentration and solar radiation. A mathematical model was developed using MATLAB/Simulink to compute the transmitted hourly solar radiation, air cooling by the outlet condenser, air and wall temperatures, water production from TSS and condenser and air recirculation ratios. Computed air and wall temperatures were then introduced to ANSYS computational fluid dynamics (CFD) to evaluate the microclimatic conditions of the GH cavity. Flow vectors, relative humidity and temperatures stream lines are presented for the whole GH. Results shows that the south wall receive the greater amount of solar radiation in the winter periods. The results also predicted over 4 L/m 2 .day of water to be produced, with inside air temperature average of 18 °C.
Renewable Energy and Sustainable Development
In Egyptian desert, growing plants is difficult due to harsh climate (hot at the daytime and cold... more In Egyptian desert, growing plants is difficult due to harsh climate (hot at the daytime and cold at the night), infertile soil, low average rainfall and lack of fresh water for irrigation purposes. A set of simple transparent solar stills are integrated with a new solar driven agriculture greenhouse (GH). The stills are placed at the GH roof to use the extra solar radiation (above that required for plant photosynthesis process) for water desalination. In addition to water desalination concept the solar still units even reduce the cooling load during the daytime. A net of aluminum metal coated with black colour is placed on the base of the solar still units to raise the water temperature (enhance desalination process) and provide partially shading for the GH. Using aluminum net decreases also the number of solar still units required to produce the required amount of GH fresh water leading to a significant cost reduction.. Therefore, this technique can be used for the application where a higher VTR is essential. The main objectives of this work are sizing of the aluminum net, spacing between solar still units to obtain the threshold of plant requirements. Also fresh water production and greenhouse climatic conditions that plant needs (temperature, relative humidity, air velocity and amount of oxygen) are simulated. Numerical simulation was carried out for the hottest day of Borg Elarab, Alexandria (Egypt).
Advances in Computational Intelligence and Robotics, 2000
This chapter presents a survey on the techniques of medical image segmentation. Image segmentatio... more This chapter presents a survey on the techniques of medical image segmentation. Image segmentation methods are given in three groups based on image features used by the method. The advantages and disadvantages of the existing methods are evaluated, and the motivations to develop new techniques with respect to the addressed problems are given. Digital images and digital videos are pictures and films, respectively, which have been converted into a computer-readable binary format consisting of logical zeros and ones. An image is a still picture that does not change in time, whereas a video evolves in time and generally contains moving and/or changing objects. An important feature of digital images is that they are multidimensional signals, i.e., they are functions of more than a single variable. In the classical study of the digital signal processing the signals are usually one-dimensional functions of time. Images however, are functions of two, and perhaps three space dimensions in case of colored images, whereas a digital video as a function includes a third (or fourth) time dimension as well. A consequence of this is that digital image processing, meaning that significant computational and storage resources are required.
Biochemistry & Physiology: Open Access, 2015
Journal of Gastrointestinal Surgery, 2005
Sustainability
Water shortage, human population increase, and lack of food resources have directed societies tow... more Water shortage, human population increase, and lack of food resources have directed societies towards sustainable energy and water resources, especially for agriculture. While open agriculture requires a massive amount of water and energy, the requirements of horticultural systems can be controlled to provide standard conditions for the plants to grow, with significant decrease in water consumption. A greenhouse is a transparent indoor environment used for horticulture, as it allows for reasonable control of the microclimate conditions (e.g., temperature, air velocity, rate of ventilation, and humidity). While such systems create a controlled environment for the plants, the greenhouses need ventilation to provide fresh air. In order to have a sustainable venting mechanism, a novel solution has been proposed in this study providing a naturally ventilating system required for the plants, while at the same time reducing the energy requirements for cooling or other forced ventilation te...
Sustainability
Water shortage, human population increase, and lack of food resources have directed societies tow... more Water shortage, human population increase, and lack of food resources have directed societies towards sustainable energy and water resources, especially for agriculture. While open agriculture requires a massive amount of water and energy, the requirements of horticultural systems can be controlled to provide standard conditions for the plants to grow, with significant decrease in water consumption. A greenhouse is a transparent indoor environment used for horticulture, as it allows for reasonable control of the microclimate conditions (e.g., temperature, air velocity, rate of ventilation, and humidity). While such systems create a controlled environment for the plants, the greenhouses need ventilation to provide fresh air. In order to have a sustainable venting mechanism, a novel solution has been proposed in this study providing a naturally ventilating system required for the plants, while at the same time reducing the energy requirements for cooling or other forced ventilation te...
Agronomy
This study evaluated the effect of phosphorus and potassium (PK) fertilizer levels and foliar sea... more This study evaluated the effect of phosphorus and potassium (PK) fertilizer levels and foliar seaweed extract on early and total yield productivity and the growth of globe artichoke plants. Field experiments were conducted over two seasons on loamy–clay soil at the vegetable research farm, of the Faculty of Agriculture, Alexandria University, Egypt. Fertilizer levels of 0, 25, 50 and 75 mL L−1, and seaweed extract concentrations of 0, 5 and 10 mg L−1, individually and in combination, were used. Globe artichoke plants treated with PK liquid fertilizer, with and without seaweed extract, showed critical increases in growth (plant height and number of leaves per plant as well as foliage dry weight), yield, and some chemical constituents compared to untreated plants. The PK3 fertilizer level and 10 mL L−1 seaweed extract as a foliar spray showed greater effects than other combinations.
Agronomy
This work investigates an experimental study for using low-cost and eco-friendly oils to increase... more This work investigates an experimental study for using low-cost and eco-friendly oils to increase the shelf life of strawberry fruit. Three natural oils were used: (i) Eucalyptus camaldulensis var obtuse, (ii) Mentha piperita green aerial parts essential oils (EOs), and (iii) Moringa oleifera seeds n-hexane fixed oil (FO). Furthermore, a mixture of EOs from E. camaldulensis var obtusa and M. piperita (1/1 v/v) was used. The treated fruits were stored at 5 °C and 90% relative humidity (RH) for 18 days. HPLC was used to analyse the changes in phenolic compounds during the storage periods. The effects of biofumigation through a slow-release diffuser of EOs (E. camaldulensis var obtusa and M. piperita), or by coating with M. oleifera FO, were evaluated in terms of control of post-harvest visual and chemical quality of strawberry fruits. The post-harvest resistance of strawberry fruits to Botrytis cinerea fungal infection was also evaluated. As a result, the EO treatments significantly r...
This study presents the effective performance of a sustainable solar driven agricultural greenhou... more This study presents the effective performance of a sustainable solar driven agricultural greenhouse (GH) self-reliant of energy and irrigation water via desalination. The GH is furnished with infrastructures such as; (i) - an inlet condenser for cool air exchanger and partial water production, (ii) - an internal cavity for crop production (iii) - roof transparent solar distillers (TSD) for solar desalination and partial shading and (iv)- a thermal chimney for natural air ventilation. A mathematical model is developed to predict the performance of the sustainable GH system. A coupled approach of MATLAB/Simulink and computational fluid dynamics (CFD) based on three simulation models were used: solar radiation, thermal energy balance and CFD model. Two parametric studies were carried out. The first one analyzed the effects of different air velocity on the system thermal performance and natural ventilation rate. The second study assessed the effects of different covering material on the...
Sustainability
Cultivation in open fields mainly depends on the location and time of farming, which itself highl... more Cultivation in open fields mainly depends on the location and time of farming, which itself highly depends on the quality and quantity of water for irrigation, weather conditions and soil characteristics. Water resources are highly dependent on the limited freshwater resources from the groundwater system, or rainwater. Countries in MENA (the Middle East and North Africa) rely mostly on desalination technologies for agriculture, due to water scarcity. Therefore, greenhouse (GH) agriculture can be developed to succeed in dealing with the water scarcity and provide sufficient sources of agricultural products as a sustainable solution. These indoor agriculture facilities, which are enclosed by transparent covers, can produce different sources of fruits and vegetables, using a controlled amount of water. By reducing the exchange rate of air with the outside environment, which is known as the confinement effects, greenhouses generate a suitable environment for the plants to grow under tra...
Water
The need for sustainable desalination arises from fast-occurring global warming and intensifying ... more The need for sustainable desalination arises from fast-occurring global warming and intensifying droughts due to increasing temperatures, particularly in the Middle East and North African (MENA) regions. Lack of water resources has meant that the countries in these regions have had to desalinate seawater through different sustainable technologies for food supplies and agricultural products. Greenhouses (GH) are used to protect crops from harsh climates, creating a controlled environment requiring less water. In order to have a sustainable resilient GH, a zero-liquid-discharge system (ZLD) was developed by using solar still (SS) desalination techniques, humidification-dehumidification (HDH), and rainwater harvesting. An experiment was designed and carried out by designing and manufacturing a wick type solar still, together with an HDH system, implemented into a GH. Using a pyrometer, the solar intensity was recorded, while the microclimate conditions (temperature and relative humidit...
Energies
Solar-powered desalination is a sustainable solution for countries experiencing water scarcity. S... more Solar-powered desalination is a sustainable solution for countries experiencing water scarcity. Several studies have presented different solutions to provide cleaner production in desalination systems. Parabolic trough collector (PTC) is one of these solutions that has proven to be superior among solar concentrators. Furthermore, a number of studies have investigated the use of PTC for distillation of saline water in response to water scarcity. In this study, a modified PTC model was developed, in which the heat exchanger was replaced by a condensation tube to reduce the energy consumption, and a black layer was introduced to the surface of the receiver to enhance its absorptance. As a reference case, the system productivity according to average solar intensities in Zagazig, located at 30°34′N 31°30′E in the North East of Egypt, is estimated. The results indicated that the maximum production rate that can be attained is 1.72 kg/h. Then, the structure of the system is evaluated with ...
Energies
In this study, an analysis is carried out to determine the optimal application of multiple renewa... more In this study, an analysis is carried out to determine the optimal application of multiple renewable energy resources, namely wind and solar, to provide electricity requirements for green smart cities and environments. This was done to determine the potential of renewable energy to provide clean, economically viable energy for the case study of Zagazig, located at 30°34′ N 31°30′ E in the North East of Egypt. The relevant data surrounding the production of energy were collected, including the meteorological data from NASA, and specifications regarding renewable resources including solar panels, wind turbines, and storage batteries. Then a hybrid model was constructed consisting of Photovoltaics (PV) panels, wind turbines, a converter, and storage batteries. Once the model was constructed, meteorological data were added alongside average daily demand and cost of electricity per kWh. The optimal solution for Zagazig consisted of 181,000 kW of solar panels feeding directly into the gri...
Pathogens
The West Bank can be considered as a high-risk area for Legionella prevalence in drinking water d... more The West Bank can be considered as a high-risk area for Legionella prevalence in drinking water due to high ambient temperature, intermittent water supply, frequent pressure loss, and storage of drinking water in roof containers. To assess occurrence of Legionella species, especially L. pneumophila, in the drinking water of the West Bank, the drinking water distribution systems of eight hospitals were sampled over a period of 2.3 years covering the seasonal cycle and the major geographic regions. To gain insight into potential environmental drivers, a set of physico-chemical and microbiological parameters was recorded. Sampling included drinking water and biofilm analyzed by culture and PCR-based methods. Cultivation led to the isolation of 180 strains of L. pneumophila that were genotyped by Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA). Surprisingly, the abundance of culturable L. pneumophila was low in drinking water of the sampling sites, with only three out of ei...
Energies
Solar-powered desalination is a sustainable solution for countries experiencing water scarcity. S... more Solar-powered desalination is a sustainable solution for countries experiencing water scarcity. Several studies have presented different solutions to provide cleaner production in desalination systems. Parabolic trough collector (PTC) is one of these solutions that has proven to be superior among solar concentrators. Furthermore, a number of studies have investigated the use of PTC for distillation of saline water in response to water scarcity. In this study, a modified PTC model was developed, in which the heat exchanger was replaced by a condensation tube to reduce the energy consumption, and a black layer was introduced to the surface of the receiver to enhance its absorptance. As a reference case, the system productivity according to average solar intensities in Zagazig, located at 30°34′N 31°30′E in the North East of Egypt, is estimated. The results indicated that the maximum production rate that can be attained is 1.72 kg/h. Then, the structure of the system is evaluated with ...
Water
The need for sustainable desalination arises from fast-occurring global warming and intensifying ... more The need for sustainable desalination arises from fast-occurring global warming and intensifying droughts due to increasing temperatures, particularly in the Middle East and North African (MENA) regions. Lack of water resources has meant that the countries in these regions have had to desalinate seawater through different sustainable technologies for food supplies and agricultural products. Greenhouses (GH) are used to protect crops from harsh climates, creating a controlled environment requiring less water. In order to have a sustainable resilient GH, a zero-liquid-discharge system (ZLD) was developed by using solar still (SS) desalination techniques, humidification-dehumidification (HDH), and rainwater harvesting. An experiment was designed and carried out by designing and manufacturing a wick type solar still, together with an HDH system, implemented into a GH. Using a pyrometer, the solar intensity was recorded, while the microclimate conditions (temperature and relative humidit...
Energies
In this study, an analysis is carried out to determine the optimal application of multiple renewa... more In this study, an analysis is carried out to determine the optimal application of multiple renewable energy resources, namely wind and solar, to provide electricity requirements for green smart cities and environments. This was done to determine the potential of renewable energy to provide clean, economically viable energy for the case study of Zagazig, located at 30°34′ N 31°30′ E in the North East of Egypt. The relevant data surrounding the production of energy were collected, including the meteorological data from NASA, and specifications regarding renewable resources including solar panels, wind turbines, and storage batteries. Then a hybrid model was constructed consisting of Photovoltaics (PV) panels, wind turbines, a converter, and storage batteries. Once the model was constructed, meteorological data were added alongside average daily demand and cost of electricity per kWh. The optimal solution for Zagazig consisted of 181,000 kW of solar panels feeding directly into the gri...
Sustainability
Cultivation in open fields mainly depends on the location and time of farming, which itself highl... more Cultivation in open fields mainly depends on the location and time of farming, which itself highly depends on the quality and quantity of water for irrigation, weather conditions and soil characteristics. Water resources are highly dependent on the limited freshwater resources from the groundwater system, or rainwater. Countries in MENA (the Middle East and North Africa) rely mostly on desalination technologies for agriculture, due to water scarcity. Therefore, greenhouse (GH) agriculture can be developed to succeed in dealing with the water scarcity and provide sufficient sources of agricultural products as a sustainable solution. These indoor agriculture facilities, which are enclosed by transparent covers, can produce different sources of fruits and vegetables, using a controlled amount of water. By reducing the exchange rate of air with the outside environment, which is known as the confinement effects, greenhouses generate a suitable environment for the plants to grow under tra...
Renewable Energy and Sustainable Development, Mar 20, 2017
In Egyptian desert, growing plants is difficult due to harsh climate (hot at the daytime and cold... more In Egyptian desert, growing plants is difficult due to harsh climate (hot at the daytime and cold at the night), infertile soil, low average rainfall and lack of fresh water for irrigation purposes. A set of simple transparent solar stills are integrated with a new solar driven agriculture greenhouse (GH). The stills are placed at the GH roof to use the extra solar radiation (above that required for plant photosynthesis process) for water desalination. In addition to water desalination concept the solar still units even reduce the cooling load during the daytime. A net of aluminum metal coated with black colour is placed on the base of the solar still units to raise the water temperature (enhance desalination process) and provide partially shading for the GH. Using aluminum net decreases also the number of solar still units required to produce the required amount of GH fresh water leading to a significant cost reduction.. Therefore, this technique can be used for the application where a higher VTR is essential. The main objectives of this work are sizing of the aluminum net, spacing between solar still units to obtain the threshold of plant requirements. Also fresh water production and greenhouse climatic conditions that plant needs (temperature, relative humidity, air velocity and amount of oxygen) are simulated. Numerical simulation was carried out for the hottest day of Borg Elarab, Alexandria (Egypt).
XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY
Agricultural greenhouse (GH) systems provides suitable microclimatic environment for maximum plan... more Agricultural greenhouse (GH) systems provides suitable microclimatic environment for maximum plant growth (quality and quantity) and protect plants from adverse atmospheric agents using appropriate technology. This will influence and ultimately modifies the crop microclimate, thereby improving the plants growing condition, improving their quality and permitting high yields; thus, lengthening the market availability of the products. This paper describes the basic operation of a sustainable agricultural greenhouse suitable for the mild winter climate of the Mediterranean region for air heating, solar energy utilization, water desalination and plant production. The numerical analysis of the dynamic model for determination of various GH performance was done for a typical winter day of December of Borg El-Arab, Alexandria Egypt. A GH heating control strategy based on MATLAB and CFD simulations for energy saving, suitable microclimate maintenance and better performance of the GH systems were studied. The GH transient performance and uncertain microclimate conditions depend on air temperature, relative humidity, carbon dioxide concentration and solar radiation. A mathematical model was developed using MATLAB/Simulink to compute the transmitted hourly solar radiation, air cooling by the outlet condenser, air and wall temperatures, water production from TSS and condenser and air recirculation ratios. Computed air and wall temperatures were then introduced to ANSYS computational fluid dynamics (CFD) to evaluate the microclimatic conditions of the GH cavity. Flow vectors, relative humidity and temperatures stream lines are presented for the whole GH. Results shows that the south wall receive the greater amount of solar radiation in the winter periods. The results also predicted over 4 L/m 2 .day of water to be produced, with inside air temperature average of 18 °C.
Renewable Energy and Sustainable Development
In Egyptian desert, growing plants is difficult due to harsh climate (hot at the daytime and cold... more In Egyptian desert, growing plants is difficult due to harsh climate (hot at the daytime and cold at the night), infertile soil, low average rainfall and lack of fresh water for irrigation purposes. A set of simple transparent solar stills are integrated with a new solar driven agriculture greenhouse (GH). The stills are placed at the GH roof to use the extra solar radiation (above that required for plant photosynthesis process) for water desalination. In addition to water desalination concept the solar still units even reduce the cooling load during the daytime. A net of aluminum metal coated with black colour is placed on the base of the solar still units to raise the water temperature (enhance desalination process) and provide partially shading for the GH. Using aluminum net decreases also the number of solar still units required to produce the required amount of GH fresh water leading to a significant cost reduction.. Therefore, this technique can be used for the application where a higher VTR is essential. The main objectives of this work are sizing of the aluminum net, spacing between solar still units to obtain the threshold of plant requirements. Also fresh water production and greenhouse climatic conditions that plant needs (temperature, relative humidity, air velocity and amount of oxygen) are simulated. Numerical simulation was carried out for the hottest day of Borg Elarab, Alexandria (Egypt).
Advances in Computational Intelligence and Robotics, 2000
This chapter presents a survey on the techniques of medical image segmentation. Image segmentatio... more This chapter presents a survey on the techniques of medical image segmentation. Image segmentation methods are given in three groups based on image features used by the method. The advantages and disadvantages of the existing methods are evaluated, and the motivations to develop new techniques with respect to the addressed problems are given. Digital images and digital videos are pictures and films, respectively, which have been converted into a computer-readable binary format consisting of logical zeros and ones. An image is a still picture that does not change in time, whereas a video evolves in time and generally contains moving and/or changing objects. An important feature of digital images is that they are multidimensional signals, i.e., they are functions of more than a single variable. In the classical study of the digital signal processing the signals are usually one-dimensional functions of time. Images however, are functions of two, and perhaps three space dimensions in case of colored images, whereas a digital video as a function includes a third (or fourth) time dimension as well. A consequence of this is that digital image processing, meaning that significant computational and storage resources are required.
Biochemistry & Physiology: Open Access, 2015
Journal of Gastrointestinal Surgery, 2005