Abdullah Alhorani - Academia.edu (original) (raw)
Uploads
Papers by Abdullah Alhorani
Symmetry, 2020
We introduce q-Lindelöf, u-Lindelöf, p-Lindelöf, s-Lindelöf, q-countably-compact, u-countably-com... more We introduce q-Lindelöf, u-Lindelöf, p-Lindelöf, s-Lindelöf, q-countably-compact, u-countably-compact, p-countably-compact, and s-countably-compact as new covering concepts in bigeneralized topological spaces via q-open sets and u-open sets in bigeneralized topological spaces. Relationships between them are studied. As two symmetries relationships, we show that q-Lindelöf and u-Lindelöf are equivalent concepts, and that q-countably-compact and u-countably-compact are equivalent concepts. We focus on continuity images of these covering properties. Finally, we define and investigate minimal q-open set, minimal u-open set, and minimal s-open sets as three new types of minimality in bigeneralized topological spaces.
Symmetry, 2020
We introduce q-Lindelöf, u-Lindelöf, p-Lindelöf, s-Lindelöf, q-countably-compact, u-countably-com... more We introduce q-Lindelöf, u-Lindelöf, p-Lindelöf, s-Lindelöf, q-countably-compact, u-countably-compact, p-countably-compact, and s-countably-compact as new covering concepts in bigeneralized topological spaces via q-open sets and u-open sets in bigeneralized topological spaces. Relationships between them are studied. As two symmetries relationships, we show that q-Lindelöf and u-Lindelöf are equivalent concepts, and that q-countably-compact and u-countably-compact are equivalent concepts. We focus on continuity images of these covering properties. Finally, we define and investigate minimal q-open set, minimal u-open set, and minimal s-open sets as three new types of minimality in bigeneralized topological spaces.