Abdullah Aljuhani - Academia.edu (original) (raw)
Uploads
Papers by Abdullah Aljuhani
2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)
International Journal of Engineering and Advanced Technology, 2021
Computer-Aided Detection (CAD) systems are one of the most effected tools nowadays in aiding phys... more Computer-Aided Detection (CAD) systems are one of the most effected tools nowadays in aiding physicians in the detection of liver tumors at early stage. In this paper, the CADe system will be built which has the ability to detect the abnormal tumor inside the liver. In order to create that system, different types of classifiers must be implemented. In our CADe system, a support vector machine (SVM) and K-Nearest Neighbor (KNN) will be used as classifiers. A total number of 120 images including the normal and abnormal cases were collected. Initially, the features will be extracted from database images in order to distinguish between the classes of those liver tumors. Then, by using SVM and KNN the images will be classified into two classes normal and abnormal cases. The paper reveals that SVM and KNN, which demonstrated 100 percent precision, 100 percent sensitivity, and 100 percent specificity, were the best classifiers.
2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)
International Journal of Engineering and Advanced Technology, 2021
Computer-Aided Detection (CAD) systems are one of the most effected tools nowadays in aiding phys... more Computer-Aided Detection (CAD) systems are one of the most effected tools nowadays in aiding physicians in the detection of liver tumors at early stage. In this paper, the CADe system will be built which has the ability to detect the abnormal tumor inside the liver. In order to create that system, different types of classifiers must be implemented. In our CADe system, a support vector machine (SVM) and K-Nearest Neighbor (KNN) will be used as classifiers. A total number of 120 images including the normal and abnormal cases were collected. Initially, the features will be extracted from database images in order to distinguish between the classes of those liver tumors. Then, by using SVM and KNN the images will be classified into two classes normal and abnormal cases. The paper reveals that SVM and KNN, which demonstrated 100 percent precision, 100 percent sensitivity, and 100 percent specificity, were the best classifiers.