Amelia Cataldi - Academia.edu (original) (raw)

Papers by Amelia Cataldi

Research paper thumbnail of Reduced pulmonary function is age-dependent in the rat lung in normoxia

European Journal of Medical Research, 2010

Background: Oxygen transport is optimized at the cellular level, since oxygen serves as the termi... more Background: Oxygen transport is optimized at the cellular level, since oxygen serves as the terminal electron acceptor in mitochondrial oxidative phosphorylation and several enzymatic processes require molecular oxygen as substrate. During development and aging, redundant cells and exhausted cells are eliminated, respectively, whereas others can adapt to the stressful environment and survive. Objective: the study investigated the molecular mechanisms activated in the lung during normal aging, through the expression of hypoxia inducible factor (HIF), vascular endothelial growth factor (VEgF), p53, p66 Shc , putative cysteine protease (CPP32) and ki-naseB-α phosphorylation (pIkB-α). Material and methods: twelve male wistar rats divided into two age-groups, each consisting of 6 animals, 3 and 24 months old, were used. the rats were anesthetized with Nembutal (40 mg/kg, ip) and the lungs were excised from each rat and processed for tUNEL and western blotting analyses. Results: the expressions of p53, p66 Shc and CPP32 were significantly increased in the old normoxic rat lung specimens, when compared with the young ones. In parallel, expressions of VEgF and pIkBα were increased in old rather than young rats. Conclusions: Aging leads to increased expressions of p53, p66 Shc and CPP32, suggesting that apoptosis is in progress. At the same time, the lung tries to counteract apoptosis through the production of VEgF and pIkB-α to adapt itself to a stressful situation. the aging lung creates a life-support system in order to counteract the apoptotic process.

Research paper thumbnail of Aging and the carotid body: A scoping review

Respiratory Physiology & Neurobiology, Jul 1, 2023

Research paper thumbnail of Graphene-Oxide-Enriched Biomaterials: A Focus on Osteo and Chondroinductive Properties and Immunomodulation

Materials, 2022

Due to its exceptional physical properties, such as high electronic conductivity, good thermal st... more Due to its exceptional physical properties, such as high electronic conductivity, good thermal stability, excellent mechanical strength, and chemical versatility, graphene has sparked a lot of interest in the scientific community for various applications. It has therefore been employed as an antibacterial agent, in photothermal therapy (PTT) and biosensors, in gene delivery systems, and in tissue engineering for regenerative purposes. Since it was first discovered in 1947, different graphene derivatives have been synthetized from pristine graphene. The most adaptable derivate is graphene oxide (GO). Owing to different functional groups, the amphiphilic structure of GO can interact with cells and exogenous or endogenous growth/differentiation factors, allowing cell adhesion, growth, and differentiation. When GO is used as a coating for scaffolds and nanomaterials, it has been found to enhance bone, chondrogenic, cardiac, neuronal, and skin regeneration. This review focuses on the app...

Research paper thumbnail of Negative Modulation of the Angiogenic Cascade Induced by Allosteric Kinesin Eg5 Inhibitors in a Gastric Adenocarcinoma In Vitro Model

Molecules

Eg5 is a kinesin essential in bipolar spindle formation, overexpressed in tumours, thus represent... more Eg5 is a kinesin essential in bipolar spindle formation, overexpressed in tumours, thus representing a new target in cancer therapy. We aimed at evaluating the anti-cancer activity of Eg5 thiadiazoline inhibitors 2 and 41 on gastric adenocarcinoma cells (AGS), focusing on the modulation of angiogenic signalling. Docking studies confirmed a similar interaction with Eg5 to that of the parent compound K858. Thiadiazolines were also tested in combination with Hesperidin (HSD).

Research paper thumbnail of Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection

Molecules

Like other organs, brain functions diminish with age. Furthermore, for a variety of neurological ... more Like other organs, brain functions diminish with age. Furthermore, for a variety of neurological disorders—including Alzheimer’s disease—age is one of the higher-risk factors. Since in many Western countries the average age is increasing, determining approaches for decreasing the effects of aging on brain function is taking on a new urgency. Neuroinflammation and oxidative stress are two convoluted key factors in brain aging and chronic neurodegenerative diseases. The diverseness of factors, causing an age-related decrease in brain functions, requires identifying small molecules that have multiple biological activities that can affect all these factors. One great source of these small molecules is related to polyphenolic flavonoids. Recently, 3,3′,4′,7-tetrahydroxyflavone (fisetin) has been reported as a potent senotherapeutic capable of extending lifespan by reducing peroxidation levels and enhancing antioxidant cell responses. The neuroprotective effects of fisetin have been shown...

Research paper thumbnail of Novel Perceptions on Chemical Profile and Biopharmaceutical Properties of Mentha spicata Extracts: Adding Missing Pieces to the Scientific Puzzle

Plants

Mentha spicata is one of the most popular species in the genus, and it is of great interest as a ... more Mentha spicata is one of the most popular species in the genus, and it is of great interest as a gastrointestinal and sedative agent in the folk medicine system. In this study, different M. spicata extracts, obtained by the use of four solvents (hexane, chloroform, acetone and acetone/water) were chemically characterized using HPLC-ESI-MS n, which allowed for identification of 27 phenolic compounds. The extracts’ antioxidant and enzyme inhibitory properties were investigated. In addition, neuroprotective effects were evaluated in hypothalamic HypoE22 cells, and the ability of the extracts to prevent the hydrogen peroxide-induced degradation of dopamine and serotonin was observed. The best antioxidant effect was achieved for all the extraction methods using acetone/water as a solvent. These extracts were the richest in acacetin, eriodictyol, hesperidin, sagerinic acid, naringenin, luteolin, chlorogenic acid, chrysoeriol and apigenin. The intrinsic antioxidant and enzyme inhibition pr...

Research paper thumbnail of Extracellular Matrix: Immunity and Inflammation

Extracellular Matrix for Tissue Engineering and Biomaterials

The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provid... more The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provides not only support, tensile strength, and scaffolding for tissues and cells, but also biochemical signals and specialized proteins. The destabilization or alteration of the ECM structural and chemical composition affects growth, morphogenesis, differentiation, migration, communication, survival of all cells as well as inflammation and immune response. Inflammation is a complex defense mechanism characterized by leukocyte migration from the vasculature to control tissue damage induced by pathogenic (bacterial or viral), traumatic, or toxic injury with subsequent deposition of extracellular matrix resulting in tissue repair. At sites of injury, phagocytic cells, namely macrophages and neutrophils, provide innate cell-mediated immunity, and immune cells are influenced in their migration by the topography and composition of the matrix architecture. The physical and biochemical ECM properties are also able to modulate a number of processes in immune cells, especially lymphocytes that can ultimately lead to inefficient immune response. Among the large number of molecules responsible for ECM homeostasis, matrix metalloproteinases, versican, hyaluronan, and thrombospondins are the most involved in inflammation and immunity.

Research paper thumbnail of Extracellular Matrix: Immunity and Inflammation

The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provid... more The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provides not only support, tensile strength, and scaffolding for tissues and cells, but also biochemical signals and specialized proteins. The destabilization or alteration of the ECM structural and chemical composition affects growth, morphogenesis, differentiation, migration, communication, survival of all cells as well as inflammation and immune response. Inflammation is a complex defense mechanism characterized by leukocyte migration from the vasculature to control tissue damage induced by pathogenic (bacterial or viral), traumatic, or toxic injury with subsequent deposition of extracellular matrix resulting in tissue repair. At sites of injury, phagocytic cells, namely macrophages and neutrophils, provide innate cell-mediated immunity, and immune cells are influenced in their migration by the topography and composition of the matrix architecture. The physical and biochemical ECM propertie...

Research paper thumbnail of Conjugation with Methylsulfonylmethane Improves Hyaluronic Acid Anti-Inflammatory Activity in a Hydrogen Peroxide-Exposed Tenocyte Culture In Vitro Model

International Journal of Molecular Sciences

Rotator cuff tears (RCTs) and rotator cuff disease (RCD) are important causes of disability in mi... more Rotator cuff tears (RCTs) and rotator cuff disease (RCD) are important causes of disability in middle-aged individuals affected by nontraumatic shoulder dysfunctions. Our previous studies have demonstrated that four different hyaluronic acid preparations (HAPs), including Artrosulfur® hyaluronic acid (HA) (Alfakjn S.r.l., Garlasco, Italy), may exert a protective effect in human RCT-derived tendon cells undergoing oxidative stress damage. Recently, methylsulfonylmethane (MSM) (Barentz, Paderno Dugnano, Italy) has proven to have anti-inflammatory properties and to cause pain relief in patients affected by tendinopathies. This study aims at evaluating three preparations (Artrosulfur® HA, MSM, and Artrosulfur® MSM + HA) in the recovery from hydrogen peroxide-induced oxidative stress damage in human tenocyte. Cell proliferation, Lactate Dehydrogenase (LDH) release, and inducible nitric oxide synthases (iNOS) and prostaglandin E2 (PGE2) modulation were investigated. In parallel, expressio...

Research paper thumbnail of Dual Acting Carbon Monoxide Releasing Molecules and Carbonic Anhydrase Inhibitors Differentially Modulate Inflammation in Human Tenocytes

Biomedicines

Sustained oxidative stress and inflammation have been reported as the major factors responsible f... more Sustained oxidative stress and inflammation have been reported as the major factors responsible for the failure of tendon healing during rotator cuff tears (RCTs) and rotator cuff disease (RCD). Although, their therapeutic management remains still challenging. Carbonic anhydrases (CAs) are involved in many pathological conditions, and the overexpression of both CA9 and 12 in inflamed joints has been recently reported. Consequently, a selective CA9/12 inhibition could be a feasible strategy for improving tendon recovery after injury. In addition, since carbon monoxide (CO) has been proven to have an important role in modulating inflammation, CO releasing molecules (CORMs) can be also potentially suitable compounds. The present study aims at evaluating five newly synthesized dual-mode acting CA inhibitors (CAIs)-CORMs compounds, belonging to two chemical scaffolds, on tendon-derived human primary cells under H2O2 stimulation in comparison with Meloxicam. Our results show that compound...

Research paper thumbnail of Phenolic Characterization and Neuroprotective Properties of Grape Pomace Extracts

Molecules

Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacolog... more Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacological properties. Among the different parts of the plant, pomace is of particular interest as a winemaking industry by-product. A characterization of the water extract from grape pomace from Montepulciano d’Abruzzo variety (Villamagna doc) was conducted, and the bioactive phenolic compounds were quantified through HPLC-DAD-MS analysis. HypoE22, a hypothalamic cell line, was challenged with an oxidative stimulus and exposed to different concentrations (1 µg/mL–1 mg/mL) of the pomace extract for 24, 48, and 72 h. In the same conditions, cells were exposed to the sole catechin, in a concentration range (5–500 ng/mL) consistent with the catechin level in the extract. Cell proliferation was investigated by MTT assay, dopamine release through HPLC-EC method, PGE2 amount by an ELISA kit, and expressions of neurotrophin brain-derived neurotrophic factor (BDNF) and of cyclooxygenase-2 (COX-2) by R...

Research paper thumbnail of Selective Inhibitors of the Inducible Nitric Oxide Synthase as Modulators of Cell Responses in LPS-Stimulated Human Monocytes

Molecules

Inducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response tow... more Inducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response towards inflammation, and it is responsible for the production of sustained amounts of nitric oxide. This free radical molecule is involved in the defense against pathogens; nevertheless, its continuous and dysregulated production contributes to the development of several pathological conditions, including inflammatory and autoimmune diseases. In the present study, we investigated the effects of two new iNOS inhibitors, i.e., 4-(ethanimidoylamino)-N-(4-fluorophenyl)benzamide hydrobromide (FAB1020) and N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamidedihydrochloride (CM554), on human LPS-stimulated monocytes, using the 1400 W compound as a comparison. Our results show that CM544 and FAB1020 are selective and decrease cytotoxicity, IL-6 secretion and LPS-stimulated monocyte migration. Furthermore, the modulation of iNOS, nitrotyrosine and Nrf2 were analyzed at the protein level. Based on ...

Research paper thumbnail of Design, Synthesis and Biological Evaluation of Aromatase Inhibitors based on Sulfonates and Sulfonamides of Resveratrol

Pharmaceuticals

A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for ... more A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b–c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure–activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b–c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.

Research paper thumbnail of The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells

Materials

Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo... more Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the...

Research paper thumbnail of Bisphosfonate matrix metalloproteinase inhibitors for the treatment of periodontitis: An in vitro study

International Journal of Molecular Medicine

Research paper thumbnail of Metabolomic Profile and Antioxidant/Anti-Inflammatory Effects of Industrial Hemp Water Extract in Fibroblasts, Keratinocytes and Isolated Mouse Skin Specimens

Antioxidants

Industrial hemp is a multiuse crop whose phytocomplex includes terpenophenolics and flavonoids. I... more Industrial hemp is a multiuse crop whose phytocomplex includes terpenophenolics and flavonoids. In the present study, the phenolic and terpenophenolic compounds were assayed in the water extract of the hemp variety Futura 75. Protective effects were also investigated in human fibroblast and keratinocytes and isolate mouse skin specimens, which were exposed to hydrogen peroxide and/or to the extract (1–500 µg/mL). The results of phytochemical analysis suggested the cannabidiol, cannabidiolic acid and rutin as the prominent phytocompounds. In the in vitro system represented by human keratinocytes and fibroblasts, the hemp extract was found to be able to protect cells from cytotoxicity and apoptosis induced by oxidative stress. Moreover, modulatory effects on IL-6, a key mediator in skin proliferation, were found. In isolated rat skin, the extract reduced hydrogen peroxide-induced l-dopa turnover, prostaglandin-E2 production and the ratio kynurenine/tryptpophan, thus corroborating anti...

Research paper thumbnail of Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes

International Journal of Molecular Sciences

Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD’s effec... more Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD’s effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases. Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed. Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD i...

Research paper thumbnail of Biological Factors, Metals, and Biomaterials Regulating Osteogenesis through Autophagy

International Journal of Molecular Sciences

Bone loss raises great concern in numerous situations, such as ageing and many diseases and in bo... more Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and development. This review provides a revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones, nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic process is provided as ...

Research paper thumbnail of Extracellular vesicles from rat-bone-marrow mesenchymal stromal/stem cells improve tendon repair in rat Achilles tendon injury model in dose-dependent manner: A pilot study

PLOS ONE

Mesenchymal stromal/stem cells (MSCs) are increasingly employed for tissue regeneration, largely ... more Mesenchymal stromal/stem cells (MSCs) are increasingly employed for tissue regeneration, largely mediated through paracrine actions. Currently, extracellular vesicles (EVs) released by MSCs are major mediators of these paracrine effects. We evaluated whether rat-bonemarrow-MSC-derived EVs (rBMSCs-EVs) can ameliorate tendon injury in an in vivo rat model. Pro-collagen1A2 and MMP14 protein are expressed in rBMSC-EVs, and are important factors for extracellular-matrix tendon-remodeling. In addition, we found pro-col-lagen1A2 in rBMSC-EV surface-membranes by dot blot. In vitro on cells isolated from Achilles tendons, utilized as rBMSC-EVs recipient cells, EVs at both low and high doses induce migration of tenocytes; at higher concentration, they induce proliferation and increase expression of Collagen type I in tenocytes. Pretreatment with trypsin abrogate the effect of EVs on cell proliferation and migration, and the expression of collagen I. When either low-or high-dose rBMSCs-EVs were injected into a rat-Achilles tendon injury-model (immediately after damage), at 30 days, rBMSC-EVs were found to have accelerated the remodeling stage of tendon repair in a dose-dependent manner. At histology and histomorphology evaluation, high doses of rBMSCs-EVs produced better restoration of tendon architecture, with optimal tendon-fiber alignment and lower vascularity. Higher EV-concentrations demonstrated greater expression of collagen type I and lower expression of

Research paper thumbnail of Osteoblastic Differentiation on Graphene Oxide-Functionalized Titanium Surfaces: An In Vitro Study

Nanomaterials

Background: Titanium implant surfaces are continuously modified to improve biocompatibility and t... more Background: Titanium implant surfaces are continuously modified to improve biocompatibility and to promote osteointegration. Graphene oxide (GO) has been successfully used to ameliorate biomaterial performances, in terms of implant integration with host tissue. The aim of this study is to evaluate the Dental Pulp Stem Cells (DPSCs) viability, cytotoxic response, and osteogenic differentiation capability in the presence of GO-coated titanium surfaces. Methods: Two titanium discs types, machined (control, Crtl) and sandblasted and acid-etched (test, Test) discs, were covalently functionalized with GO. The ability of the GO-functionalized substrates to allow the proliferation and differentiation of DPSCs, as well as their cytotoxic potential, were assessed. Results: The functionalization procedures provide a homogeneous coating with GO of the titanium surface in both control and test substrates, with unchanged surface roughness with respect to the untreated surfaces. All samples show t...

Research paper thumbnail of Reduced pulmonary function is age-dependent in the rat lung in normoxia

European Journal of Medical Research, 2010

Background: Oxygen transport is optimized at the cellular level, since oxygen serves as the termi... more Background: Oxygen transport is optimized at the cellular level, since oxygen serves as the terminal electron acceptor in mitochondrial oxidative phosphorylation and several enzymatic processes require molecular oxygen as substrate. During development and aging, redundant cells and exhausted cells are eliminated, respectively, whereas others can adapt to the stressful environment and survive. Objective: the study investigated the molecular mechanisms activated in the lung during normal aging, through the expression of hypoxia inducible factor (HIF), vascular endothelial growth factor (VEgF), p53, p66 Shc , putative cysteine protease (CPP32) and ki-naseB-α phosphorylation (pIkB-α). Material and methods: twelve male wistar rats divided into two age-groups, each consisting of 6 animals, 3 and 24 months old, were used. the rats were anesthetized with Nembutal (40 mg/kg, ip) and the lungs were excised from each rat and processed for tUNEL and western blotting analyses. Results: the expressions of p53, p66 Shc and CPP32 were significantly increased in the old normoxic rat lung specimens, when compared with the young ones. In parallel, expressions of VEgF and pIkBα were increased in old rather than young rats. Conclusions: Aging leads to increased expressions of p53, p66 Shc and CPP32, suggesting that apoptosis is in progress. At the same time, the lung tries to counteract apoptosis through the production of VEgF and pIkB-α to adapt itself to a stressful situation. the aging lung creates a life-support system in order to counteract the apoptotic process.

Research paper thumbnail of Aging and the carotid body: A scoping review

Respiratory Physiology & Neurobiology, Jul 1, 2023

Research paper thumbnail of Graphene-Oxide-Enriched Biomaterials: A Focus on Osteo and Chondroinductive Properties and Immunomodulation

Materials, 2022

Due to its exceptional physical properties, such as high electronic conductivity, good thermal st... more Due to its exceptional physical properties, such as high electronic conductivity, good thermal stability, excellent mechanical strength, and chemical versatility, graphene has sparked a lot of interest in the scientific community for various applications. It has therefore been employed as an antibacterial agent, in photothermal therapy (PTT) and biosensors, in gene delivery systems, and in tissue engineering for regenerative purposes. Since it was first discovered in 1947, different graphene derivatives have been synthetized from pristine graphene. The most adaptable derivate is graphene oxide (GO). Owing to different functional groups, the amphiphilic structure of GO can interact with cells and exogenous or endogenous growth/differentiation factors, allowing cell adhesion, growth, and differentiation. When GO is used as a coating for scaffolds and nanomaterials, it has been found to enhance bone, chondrogenic, cardiac, neuronal, and skin regeneration. This review focuses on the app...

Research paper thumbnail of Negative Modulation of the Angiogenic Cascade Induced by Allosteric Kinesin Eg5 Inhibitors in a Gastric Adenocarcinoma In Vitro Model

Molecules

Eg5 is a kinesin essential in bipolar spindle formation, overexpressed in tumours, thus represent... more Eg5 is a kinesin essential in bipolar spindle formation, overexpressed in tumours, thus representing a new target in cancer therapy. We aimed at evaluating the anti-cancer activity of Eg5 thiadiazoline inhibitors 2 and 41 on gastric adenocarcinoma cells (AGS), focusing on the modulation of angiogenic signalling. Docking studies confirmed a similar interaction with Eg5 to that of the parent compound K858. Thiadiazolines were also tested in combination with Hesperidin (HSD).

Research paper thumbnail of Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection

Molecules

Like other organs, brain functions diminish with age. Furthermore, for a variety of neurological ... more Like other organs, brain functions diminish with age. Furthermore, for a variety of neurological disorders—including Alzheimer’s disease—age is one of the higher-risk factors. Since in many Western countries the average age is increasing, determining approaches for decreasing the effects of aging on brain function is taking on a new urgency. Neuroinflammation and oxidative stress are two convoluted key factors in brain aging and chronic neurodegenerative diseases. The diverseness of factors, causing an age-related decrease in brain functions, requires identifying small molecules that have multiple biological activities that can affect all these factors. One great source of these small molecules is related to polyphenolic flavonoids. Recently, 3,3′,4′,7-tetrahydroxyflavone (fisetin) has been reported as a potent senotherapeutic capable of extending lifespan by reducing peroxidation levels and enhancing antioxidant cell responses. The neuroprotective effects of fisetin have been shown...

Research paper thumbnail of Novel Perceptions on Chemical Profile and Biopharmaceutical Properties of Mentha spicata Extracts: Adding Missing Pieces to the Scientific Puzzle

Plants

Mentha spicata is one of the most popular species in the genus, and it is of great interest as a ... more Mentha spicata is one of the most popular species in the genus, and it is of great interest as a gastrointestinal and sedative agent in the folk medicine system. In this study, different M. spicata extracts, obtained by the use of four solvents (hexane, chloroform, acetone and acetone/water) were chemically characterized using HPLC-ESI-MS n, which allowed for identification of 27 phenolic compounds. The extracts’ antioxidant and enzyme inhibitory properties were investigated. In addition, neuroprotective effects were evaluated in hypothalamic HypoE22 cells, and the ability of the extracts to prevent the hydrogen peroxide-induced degradation of dopamine and serotonin was observed. The best antioxidant effect was achieved for all the extraction methods using acetone/water as a solvent. These extracts were the richest in acacetin, eriodictyol, hesperidin, sagerinic acid, naringenin, luteolin, chlorogenic acid, chrysoeriol and apigenin. The intrinsic antioxidant and enzyme inhibition pr...

Research paper thumbnail of Extracellular Matrix: Immunity and Inflammation

Extracellular Matrix for Tissue Engineering and Biomaterials

The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provid... more The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provides not only support, tensile strength, and scaffolding for tissues and cells, but also biochemical signals and specialized proteins. The destabilization or alteration of the ECM structural and chemical composition affects growth, morphogenesis, differentiation, migration, communication, survival of all cells as well as inflammation and immune response. Inflammation is a complex defense mechanism characterized by leukocyte migration from the vasculature to control tissue damage induced by pathogenic (bacterial or viral), traumatic, or toxic injury with subsequent deposition of extracellular matrix resulting in tissue repair. At sites of injury, phagocytic cells, namely macrophages and neutrophils, provide innate cell-mediated immunity, and immune cells are influenced in their migration by the topography and composition of the matrix architecture. The physical and biochemical ECM properties are also able to modulate a number of processes in immune cells, especially lymphocytes that can ultimately lead to inefficient immune response. Among the large number of molecules responsible for ECM homeostasis, matrix metalloproteinases, versican, hyaluronan, and thrombospondins are the most involved in inflammation and immunity.

Research paper thumbnail of Extracellular Matrix: Immunity and Inflammation

The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provid... more The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provides not only support, tensile strength, and scaffolding for tissues and cells, but also biochemical signals and specialized proteins. The destabilization or alteration of the ECM structural and chemical composition affects growth, morphogenesis, differentiation, migration, communication, survival of all cells as well as inflammation and immune response. Inflammation is a complex defense mechanism characterized by leukocyte migration from the vasculature to control tissue damage induced by pathogenic (bacterial or viral), traumatic, or toxic injury with subsequent deposition of extracellular matrix resulting in tissue repair. At sites of injury, phagocytic cells, namely macrophages and neutrophils, provide innate cell-mediated immunity, and immune cells are influenced in their migration by the topography and composition of the matrix architecture. The physical and biochemical ECM propertie...

Research paper thumbnail of Conjugation with Methylsulfonylmethane Improves Hyaluronic Acid Anti-Inflammatory Activity in a Hydrogen Peroxide-Exposed Tenocyte Culture In Vitro Model

International Journal of Molecular Sciences

Rotator cuff tears (RCTs) and rotator cuff disease (RCD) are important causes of disability in mi... more Rotator cuff tears (RCTs) and rotator cuff disease (RCD) are important causes of disability in middle-aged individuals affected by nontraumatic shoulder dysfunctions. Our previous studies have demonstrated that four different hyaluronic acid preparations (HAPs), including Artrosulfur® hyaluronic acid (HA) (Alfakjn S.r.l., Garlasco, Italy), may exert a protective effect in human RCT-derived tendon cells undergoing oxidative stress damage. Recently, methylsulfonylmethane (MSM) (Barentz, Paderno Dugnano, Italy) has proven to have anti-inflammatory properties and to cause pain relief in patients affected by tendinopathies. This study aims at evaluating three preparations (Artrosulfur® HA, MSM, and Artrosulfur® MSM + HA) in the recovery from hydrogen peroxide-induced oxidative stress damage in human tenocyte. Cell proliferation, Lactate Dehydrogenase (LDH) release, and inducible nitric oxide synthases (iNOS) and prostaglandin E2 (PGE2) modulation were investigated. In parallel, expressio...

Research paper thumbnail of Dual Acting Carbon Monoxide Releasing Molecules and Carbonic Anhydrase Inhibitors Differentially Modulate Inflammation in Human Tenocytes

Biomedicines

Sustained oxidative stress and inflammation have been reported as the major factors responsible f... more Sustained oxidative stress and inflammation have been reported as the major factors responsible for the failure of tendon healing during rotator cuff tears (RCTs) and rotator cuff disease (RCD). Although, their therapeutic management remains still challenging. Carbonic anhydrases (CAs) are involved in many pathological conditions, and the overexpression of both CA9 and 12 in inflamed joints has been recently reported. Consequently, a selective CA9/12 inhibition could be a feasible strategy for improving tendon recovery after injury. In addition, since carbon monoxide (CO) has been proven to have an important role in modulating inflammation, CO releasing molecules (CORMs) can be also potentially suitable compounds. The present study aims at evaluating five newly synthesized dual-mode acting CA inhibitors (CAIs)-CORMs compounds, belonging to two chemical scaffolds, on tendon-derived human primary cells under H2O2 stimulation in comparison with Meloxicam. Our results show that compound...

Research paper thumbnail of Phenolic Characterization and Neuroprotective Properties of Grape Pomace Extracts

Molecules

Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacolog... more Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacological properties. Among the different parts of the plant, pomace is of particular interest as a winemaking industry by-product. A characterization of the water extract from grape pomace from Montepulciano d’Abruzzo variety (Villamagna doc) was conducted, and the bioactive phenolic compounds were quantified through HPLC-DAD-MS analysis. HypoE22, a hypothalamic cell line, was challenged with an oxidative stimulus and exposed to different concentrations (1 µg/mL–1 mg/mL) of the pomace extract for 24, 48, and 72 h. In the same conditions, cells were exposed to the sole catechin, in a concentration range (5–500 ng/mL) consistent with the catechin level in the extract. Cell proliferation was investigated by MTT assay, dopamine release through HPLC-EC method, PGE2 amount by an ELISA kit, and expressions of neurotrophin brain-derived neurotrophic factor (BDNF) and of cyclooxygenase-2 (COX-2) by R...

Research paper thumbnail of Selective Inhibitors of the Inducible Nitric Oxide Synthase as Modulators of Cell Responses in LPS-Stimulated Human Monocytes

Molecules

Inducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response tow... more Inducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response towards inflammation, and it is responsible for the production of sustained amounts of nitric oxide. This free radical molecule is involved in the defense against pathogens; nevertheless, its continuous and dysregulated production contributes to the development of several pathological conditions, including inflammatory and autoimmune diseases. In the present study, we investigated the effects of two new iNOS inhibitors, i.e., 4-(ethanimidoylamino)-N-(4-fluorophenyl)benzamide hydrobromide (FAB1020) and N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamidedihydrochloride (CM554), on human LPS-stimulated monocytes, using the 1400 W compound as a comparison. Our results show that CM544 and FAB1020 are selective and decrease cytotoxicity, IL-6 secretion and LPS-stimulated monocyte migration. Furthermore, the modulation of iNOS, nitrotyrosine and Nrf2 were analyzed at the protein level. Based on ...

Research paper thumbnail of Design, Synthesis and Biological Evaluation of Aromatase Inhibitors based on Sulfonates and Sulfonamides of Resveratrol

Pharmaceuticals

A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for ... more A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b–c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure–activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b–c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.

Research paper thumbnail of The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells

Materials

Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo... more Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the...

Research paper thumbnail of Bisphosfonate matrix metalloproteinase inhibitors for the treatment of periodontitis: An in vitro study

International Journal of Molecular Medicine

Research paper thumbnail of Metabolomic Profile and Antioxidant/Anti-Inflammatory Effects of Industrial Hemp Water Extract in Fibroblasts, Keratinocytes and Isolated Mouse Skin Specimens

Antioxidants

Industrial hemp is a multiuse crop whose phytocomplex includes terpenophenolics and flavonoids. I... more Industrial hemp is a multiuse crop whose phytocomplex includes terpenophenolics and flavonoids. In the present study, the phenolic and terpenophenolic compounds were assayed in the water extract of the hemp variety Futura 75. Protective effects were also investigated in human fibroblast and keratinocytes and isolate mouse skin specimens, which were exposed to hydrogen peroxide and/or to the extract (1–500 µg/mL). The results of phytochemical analysis suggested the cannabidiol, cannabidiolic acid and rutin as the prominent phytocompounds. In the in vitro system represented by human keratinocytes and fibroblasts, the hemp extract was found to be able to protect cells from cytotoxicity and apoptosis induced by oxidative stress. Moreover, modulatory effects on IL-6, a key mediator in skin proliferation, were found. In isolated rat skin, the extract reduced hydrogen peroxide-induced l-dopa turnover, prostaglandin-E2 production and the ratio kynurenine/tryptpophan, thus corroborating anti...

Research paper thumbnail of Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes

International Journal of Molecular Sciences

Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD’s effec... more Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD’s effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases. Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed. Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD i...

Research paper thumbnail of Biological Factors, Metals, and Biomaterials Regulating Osteogenesis through Autophagy

International Journal of Molecular Sciences

Bone loss raises great concern in numerous situations, such as ageing and many diseases and in bo... more Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and development. This review provides a revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones, nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic process is provided as ...

Research paper thumbnail of Extracellular vesicles from rat-bone-marrow mesenchymal stromal/stem cells improve tendon repair in rat Achilles tendon injury model in dose-dependent manner: A pilot study

PLOS ONE

Mesenchymal stromal/stem cells (MSCs) are increasingly employed for tissue regeneration, largely ... more Mesenchymal stromal/stem cells (MSCs) are increasingly employed for tissue regeneration, largely mediated through paracrine actions. Currently, extracellular vesicles (EVs) released by MSCs are major mediators of these paracrine effects. We evaluated whether rat-bonemarrow-MSC-derived EVs (rBMSCs-EVs) can ameliorate tendon injury in an in vivo rat model. Pro-collagen1A2 and MMP14 protein are expressed in rBMSC-EVs, and are important factors for extracellular-matrix tendon-remodeling. In addition, we found pro-col-lagen1A2 in rBMSC-EV surface-membranes by dot blot. In vitro on cells isolated from Achilles tendons, utilized as rBMSC-EVs recipient cells, EVs at both low and high doses induce migration of tenocytes; at higher concentration, they induce proliferation and increase expression of Collagen type I in tenocytes. Pretreatment with trypsin abrogate the effect of EVs on cell proliferation and migration, and the expression of collagen I. When either low-or high-dose rBMSCs-EVs were injected into a rat-Achilles tendon injury-model (immediately after damage), at 30 days, rBMSC-EVs were found to have accelerated the remodeling stage of tendon repair in a dose-dependent manner. At histology and histomorphology evaluation, high doses of rBMSCs-EVs produced better restoration of tendon architecture, with optimal tendon-fiber alignment and lower vascularity. Higher EV-concentrations demonstrated greater expression of collagen type I and lower expression of

Research paper thumbnail of Osteoblastic Differentiation on Graphene Oxide-Functionalized Titanium Surfaces: An In Vitro Study

Nanomaterials

Background: Titanium implant surfaces are continuously modified to improve biocompatibility and t... more Background: Titanium implant surfaces are continuously modified to improve biocompatibility and to promote osteointegration. Graphene oxide (GO) has been successfully used to ameliorate biomaterial performances, in terms of implant integration with host tissue. The aim of this study is to evaluate the Dental Pulp Stem Cells (DPSCs) viability, cytotoxic response, and osteogenic differentiation capability in the presence of GO-coated titanium surfaces. Methods: Two titanium discs types, machined (control, Crtl) and sandblasted and acid-etched (test, Test) discs, were covalently functionalized with GO. The ability of the GO-functionalized substrates to allow the proliferation and differentiation of DPSCs, as well as their cytotoxic potential, were assessed. Results: The functionalization procedures provide a homogeneous coating with GO of the titanium surface in both control and test substrates, with unchanged surface roughness with respect to the untreated surfaces. All samples show t...