Amy Sims - Academia.edu (original) (raw)

Papers by Amy Sims

Research paper thumbnail of Mouse Hepatitis Virus 3C-Like Protease Cleaves a 22-Kilodalton Protein from the Open Reading Frame 1a Polyprotein in Virus-Infected Cells and In Vitro

Journal of Virology, Mar 1, 1998

The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11... more The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser 4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro that contained one or more 3CLpro cleavage sites, and cleavage of these substrates by recombinant 3CLpro in vitro confirmed that amino-terminal cleavage of p1a-22 occurred at Gln_Ser 4014 . We demonstrated that the carboxy-terminal cleavage of the p1a-22 protein occurred at Gln_Asn 4208 , a sequence that had not been predicted as a site for cleavage by MHV 3CLpro. Our results demonstrate the usefulness of recombinant MHV 3CLpro in identifying and confirming cleavage sites within the gene 1 polyprotein. Based on our results, we predict that at least seven mature proteins are processed from the ORF 1a polyprotein by 3CLpro and suggest that additional noncanonical cleavage sites may be used by 3CLpro during processing of the gene 1 polyprotein.

Research paper thumbnail of Advani et al 2013 Supplemental information

Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the n... more Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsensemediated mRNA decay pathway Translation 2013; 1(1);

Research paper thumbnail of Running Title: A Full-length Infectious Clone of NL63 2

word count: 215 14 Text word count: 6494 15 16 ABSTRACT 1

Research paper thumbnail of Mechanisms of Zoonotic Severe Acute Respiratory Syndrome Coronavirus Host Range Expansion in Human Airway Epithelium

Journal of Virology, Mar 1, 2008

In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and caused over 8,000 h... more In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and caused over 8,000 human cases of infection and more than 700 deaths worldwide. Zoonotic SARS-CoV likely evolved to infect humans by a series of transmission events between humans and animals for sale in China. Using synthetic biology, we engineered the spike protein (S) from a civet strain, SZ16, into our epidemic strain infectious clone, creating the chimeric virus icSZ16-S, which was infectious but yielded progeny viruses incapable of propagating in vitro.

Research paper thumbnail of HCoV-HKU1 Spike protein uses O -acetylated sialic acid as an attachment receptor determinant and employs HE protein as a receptor-destroying enzyme

Journal of Virology, 2015

Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an uni... more Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an unidentified cellular receptor. hCoV-HKU1 encodes a hemagglutinin-esterase (HE) protein that is unique to the group a betacoronaviruses (group 2a). The function of HKU1-HE remains largely undetermined. In this study, we examined binding of the S1 domain of hCoV-HKU1 spike to a panel of cells and found that the S1 could specifically bind on the cell surface of a human rhabdomyosarcoma cell line, RD. Pretreatment of RD cells with neuraminidase (NA) and trypsin greatly reduced the binding, suggesting that the binding was mediated by sialic acids on glycoproteins. However, unlike other group 2a CoVs, e.g., hCoV-OC43, for which 9-O-acetylated sialic acid (9-O-Ac-Sia) serves as a receptor determinant, HKU1-S1 bound with neither 9-O-Ac-Sia-containing glycoprotein(s) nor rat and mouse erythrocytes. Nonetheless, the HKU1-HE was similar to OC43-HE, also possessed sialate-O-acetylesterase activity, and acted as a receptor-destroying enzyme (RDE) capable of eliminating the binding of HKU1-S1 to RD cells, whereas the O-acetylesterase-inactive HKU1-HE mutant lost this capacity. Using primary human ciliated airway epithelial (HAE) cell cultures, the only in vitro replication model for hCoV-HKU1 infection, we confirmed that pretreatment of HAE cells with HE but not the enzymatically inactive mutant blocked hCoV-HKU1 infection. These results demonstrate that hCoV-HKU1 exploits O-Ac-Sia as a cellular attachment receptor determinant to initiate the infection of host cells and that its HE protein possesses the corresponding sialate-O-acetylesterase RDE activity. Human coronaviruses (hCoV) are important human respiratory pathogens. Among the six hCoVs identified to date, only hCoV-HKU1 has no defined cellular receptor. It is also unclear whether hemagglutinin-esterase (HE) protein plays a role in viral entry. In this study, we found that, similarly to other members of the group 2a CoVs, sialic acid moieties on glycoproteins are critical receptor determinants for the hCoV-HKU1 infection. Interestingly, the virus seems to employ a type of sialic acid different from those employed by other group 2a CoVs. In addition, we determined that the HKU1-HE protein is an O-acetylesterase and acts as a receptor-destroying enzyme (RDE) for hCoV-HKU1. This is the first study to demonstrate that hCoV-HKU1 uses certain types of O-acetylated sialic acid residues on glycoproteins to initiate the infection of host cells and that the HKU1-HE protein possesses sialate-O-acetylesterase RDE activity.

Research paper thumbnail of The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis

Journal of virology, 1999

The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-am... more The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-amino-terminal polyproteins, polyprotein 1a and polyprotein 1ab. The gene 1 polyproteins are processed by viral proteinases to yield at least 15 mature products, including a putative RNA helicase from polyprotein 1ab that is presumed to be involved in viral RNA synthesis. Antibodies directed against polypeptides encoded by open reading frame 1b were used to characterize the expression and processing of the MHV helicase and to define the relationship of helicase to the viral nucleocapsid protein (N) and to sites of viral RNA synthesis in MHV-infected cells. The antihelicase antibodies detected a 67-kDa protein in MHV-infected cells that was translated and processed throughout the virus life cycle. Processing of the 67-kDa helicase from polyprotein 1ab was abolished by E64d, a known inhibitor of the MHV 3C-like proteinase. When infected cells were probed for helicase by immunofluorescence la...

Research paper thumbnail of Mouse hepatitis virus 3C-like protease cleaves a 22-kilodalton protein from the open reading frame 1a polyprotein in virus-infected cells and in vitro

Journal of virology, 1998

The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11... more The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro t...

Research paper thumbnail of Mutational Analysis of MHV-A59 Replicase Protein-NSP10

Advances in Experimental Medicine and Biology, 2006

1. INTRODUCTION 22-kb replicase gene to yield two large polyproteins from two overlapping open re... more 1. INTRODUCTION 22-kb replicase gene to yield two large polyproteins from two overlapping open reading frames (ORF1a and ORF1b). Approximately 70% of the time ORF1a is translated to produce a 495-kDa polyprotein. About 30% of the time, ribosomal ...

Research paper thumbnail of Severe Acute Respiratory Syndrome Coronavirus Infection of Human Ciliated Airway Epithelia: Role of Ciliated Cells in Viral Spread in the Conducting Airways of the Lungs

Journal of Virology, 2005

Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of... more Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-con- verting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway

Research paper thumbnail of Renilla Luciferase as a Reporter to Assess SARS-CoV mRNA Transcription Regulation and Efficacy of ANTI-SARS-CoV Agents

Advances in Experimental Medicine and Biology, 2006

Research paper thumbnail of A comprehensive collection of systems biology data characterizing the host response to viral infection

Scientific Data, 2014

Research program was established by the U.S. National Institute of Allergy and Infectious Disease... more Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.

Research paper thumbnail of MHV-A59 Gene 1 Proteins are Associated with Two Distinct Membrane Populations

Advances in Experimental Medicine and Biology, 2001

Research paper thumbnail of The NSP2 Proteins of Mouse Hepatitis Virus and Sars Coronavirus are Dispensable for Viral Replication

Advances in Experimental Medicine and Biology, 2006

The results presented here demonstrate that the MHV and SARS-CoV nsp2 proteins are not required f... more The results presented here demonstrate that the MHV and SARS-CoV nsp2 proteins are not required for the production of infectious virus, for polyprotein expression or processing, or for viral replication complex formation in cell culture. The nsp2 protein domain resides in a region of the coronavirus replicase that is relatively nonconserved across coronaviruses. In fact, the size and amino acid sequence variability of nsp2 across the different coronaviruses has led some investigators to speculate that the nsp2 protein, along with the nsp1 and nsp3 proteins, may play host- and/or cell-specific roles in the virus life cycle. While this may be the case, it should be noted that nsp2, in some form, exists in all coronaviruses studied to date and likely plays a pivotal role in the viral life cycle. A previous study from our laboratory identified a coronavirus replicase protein that plays an important role in viral pathogenesis. Such may prove to be the case for nsp2, as well. Alternatively, beacuse nsp2 exists as a detectable precursor protein nsp2-3 prior to processing of nsp2 and nsp3 into mature proteins, nsp2 may play a critical adaptor/regulatory role for nsp3 function. Importantly, the viruses produced in this study provide a system by which the role of the nsp2 protein in viral infection can be characterized.

Research paper thumbnail of Sars Coronavirus Vaccine Development

Advances in Experimental Medicine and Biology, 2006

Coronavirus infections are associated with severe diseases of the lower respiratory and gastroint... more Coronavirus infections are associated with severe diseases of the lower respiratory and gastrointestinal tract in humans and animals, yet little is known about the underlying molecular mechanisms governing virulence and pathogenesis. Among the human coronaviruses, the etiologic ...

Research paper thumbnail of Altering SARS Coronavirus Frameshift Efficiency Affects Genomic and Subgenomic RNA Production

Viruses, 2013

In previous studies, differences in the amount of genomic and subgenomic RNA produced by coronavi... more In previous studies, differences in the amount of genomic and subgenomic RNA produced by coronaviruses with mutations in the programmed ribosomal frameshift signal of ORF1a/b were observed. It was not clear if these differences were due to changes in genomic sequence, the protein sequence or the frequency of frameshifting. Here, viruses with synonymous codon changes are shown to produce different ratios of genomic and subgenomic RNA. These findings demonstrate that the protein sequence is not the primary cause of altered genomic and subgenomic RNA production. The synonymous codon changes affect both the structure of the frameshift signal and frameshifting efficiency. Small differences in frameshifting efficiency result in dramatic differences in genomic RNA production and TCID 50 suggesting that the frameshifting frequency must stay above

Research paper thumbnail of Sars Cov Replication and Pathogenesis in Human Airway Airway Epithelial Cultures

Advances in Experimental Medicine and Biology, 2006

... Amy C. Sims, Boyd Yount, Susan E. Burkett, Ralph S. Baric, and Raymond J. Pickles* ... To gen... more ... Amy C. Sims, Boyd Yount, Susan E. Burkett, Ralph S. Baric, and Raymond J. Pickles* ... To generate recombinant SARS-CoV GFP, the F plasmid was mutated to replace ORF7a/b with the GFP cDNA as described previously.6 Following transfection of Vero E6 cells, GFP-positive ...

Research paper thumbnail of Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses

mBio, 2014

The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antivir... more The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediate...

Research paper thumbnail of Running Title: MHV nsp10 plays a critical role in polyprotein processing 3

Research paper thumbnail of SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium

Virus Research, 2008

SARS coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tra... more SARS coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The severe and sudden onset of symptoms, resulting in an atypical pneumonia with dry cough and persistent high fever in cases of severe acute respiratory virus brought to light the importance of coronaviruses as potentially lethal human pathogens and the identification of several zoonotic reservoirs has made the reemergence of new strains and future epidemics all the more possible. In this chapter, we describe the pathology of SARS-CoV infection in humans and explore the use of two models of the human conducting airway to develop a better understanding of the replication and pathogenesis of SARS-CoV in relevant in vitro systems. The first culture model is a human bronchial epithelial cell line Calu-3 that can be inoculated by viruses either as a non-polarized monolayer of cells or polarized cells with tight junctions and microvilli. The second model system, derived from primary cells isolated from human airway epithelium and grown on Transwells, form a pseudostratified mucociliary epithelium that recapitulates the morphological and physiological features of the human conducting airway in vivo. Experimental results using these lung epithelial cell models demonstrate that in contrast to the pathology reported in late stage cases SARS-CoV replicates to high titers in epithelial cells of the conducting airway. The SARS-CoV receptor, human angiotensin 1 converting enzyme 2 (hACE2), was detected exclusively on the apical surface of cells in polarized Calu-3 cells and human airway epithelial cultures (HAE), indicating that hACE2 was accessible by SARS-CoV after lumenal airway delivery. Furthermore, in HAE, hACE2 was exclusively localized to ciliated airway epithelial cells. In support of the hACE2 localization data, the most productive route of inoculation and progeny virion egress in both polarized Calu-3 and ciliated cells of HAE was the apical surface suggesting mechanisms to release large quantities of virus into the lumen of the human lung. Preincubation of the apical surface of cultures with antisera directed against hACE2 reduced viral titers by two logs while antisera against DC-SIGN/DC-SIGNR did not reduce viral replication levels suggesting that hACE2 is the primary receptor for entry of SARS-CoV into the ciliated cells of HAE cultures. To assess infectivity in ciliated airway cultures derived from susceptible animal species we generated a recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF 7a/7b) and insertion of the green fluorescent protein (GFP) resulting in SARS-CoV GFP. SARS-CoV GFP replicated to similar titers as wild type viruses in Vero E6, MA104, and CaCo2 cells. In addition, SARS-CoV replication in airway epithelial cultures generated from Golden Syrian hamster tracheas reached similar titers to the human cultures by 72 h post-infection. Efficient SARS-CoV infection of ciliated cell-types in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.

Research paper thumbnail of SARS coronavirus replicase proteins in pathogenesis

Virus Research, 2008

Much progress has been made in understanding the role of structural and accessory proteins in the... more Much progress has been made in understanding the role of structural and accessory proteins in the pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) infections. The SARS epidemic also brought new attention to the proteins translated from ORF1a and ORF1b of the input genome RNA, also known as the replicase/transcriptase gene. Evidence for change within the ORF1ab coding sequence during the SARS epidemic, as well as evidence from studies with other coronaviruses, indicates that it is likely that the ORF1ab proteins play roles in virus pathogenesis distinct from or in addition to functions directly involved in viral replication. Recent reverse genetic studies have confirmed that proteins of ORF1ab may be involved in cellular signaling and modification of cellular gene expression, as well as virulence by mechanisms yet to be determined. Thus, the evolution of the ORF1ab proteins may be determined as much by issues of host range and virulence as they are by specific requirements for intracellular replication.

Research paper thumbnail of Mouse Hepatitis Virus 3C-Like Protease Cleaves a 22-Kilodalton Protein from the Open Reading Frame 1a Polyprotein in Virus-Infected Cells and In Vitro

Journal of Virology, Mar 1, 1998

The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11... more The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser 4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro that contained one or more 3CLpro cleavage sites, and cleavage of these substrates by recombinant 3CLpro in vitro confirmed that amino-terminal cleavage of p1a-22 occurred at Gln_Ser 4014 . We demonstrated that the carboxy-terminal cleavage of the p1a-22 protein occurred at Gln_Asn 4208 , a sequence that had not been predicted as a site for cleavage by MHV 3CLpro. Our results demonstrate the usefulness of recombinant MHV 3CLpro in identifying and confirming cleavage sites within the gene 1 polyprotein. Based on our results, we predict that at least seven mature proteins are processed from the ORF 1a polyprotein by 3CLpro and suggest that additional noncanonical cleavage sites may be used by 3CLpro during processing of the gene 1 polyprotein.

Research paper thumbnail of Advani et al 2013 Supplemental information

Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the n... more Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsensemediated mRNA decay pathway Translation 2013; 1(1);

Research paper thumbnail of Running Title: A Full-length Infectious Clone of NL63 2

word count: 215 14 Text word count: 6494 15 16 ABSTRACT 1

Research paper thumbnail of Mechanisms of Zoonotic Severe Acute Respiratory Syndrome Coronavirus Host Range Expansion in Human Airway Epithelium

Journal of Virology, Mar 1, 2008

In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and caused over 8,000 h... more In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and caused over 8,000 human cases of infection and more than 700 deaths worldwide. Zoonotic SARS-CoV likely evolved to infect humans by a series of transmission events between humans and animals for sale in China. Using synthetic biology, we engineered the spike protein (S) from a civet strain, SZ16, into our epidemic strain infectious clone, creating the chimeric virus icSZ16-S, which was infectious but yielded progeny viruses incapable of propagating in vitro.

Research paper thumbnail of HCoV-HKU1 Spike protein uses O -acetylated sialic acid as an attachment receptor determinant and employs HE protein as a receptor-destroying enzyme

Journal of Virology, 2015

Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an uni... more Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an unidentified cellular receptor. hCoV-HKU1 encodes a hemagglutinin-esterase (HE) protein that is unique to the group a betacoronaviruses (group 2a). The function of HKU1-HE remains largely undetermined. In this study, we examined binding of the S1 domain of hCoV-HKU1 spike to a panel of cells and found that the S1 could specifically bind on the cell surface of a human rhabdomyosarcoma cell line, RD. Pretreatment of RD cells with neuraminidase (NA) and trypsin greatly reduced the binding, suggesting that the binding was mediated by sialic acids on glycoproteins. However, unlike other group 2a CoVs, e.g., hCoV-OC43, for which 9-O-acetylated sialic acid (9-O-Ac-Sia) serves as a receptor determinant, HKU1-S1 bound with neither 9-O-Ac-Sia-containing glycoprotein(s) nor rat and mouse erythrocytes. Nonetheless, the HKU1-HE was similar to OC43-HE, also possessed sialate-O-acetylesterase activity, and acted as a receptor-destroying enzyme (RDE) capable of eliminating the binding of HKU1-S1 to RD cells, whereas the O-acetylesterase-inactive HKU1-HE mutant lost this capacity. Using primary human ciliated airway epithelial (HAE) cell cultures, the only in vitro replication model for hCoV-HKU1 infection, we confirmed that pretreatment of HAE cells with HE but not the enzymatically inactive mutant blocked hCoV-HKU1 infection. These results demonstrate that hCoV-HKU1 exploits O-Ac-Sia as a cellular attachment receptor determinant to initiate the infection of host cells and that its HE protein possesses the corresponding sialate-O-acetylesterase RDE activity. Human coronaviruses (hCoV) are important human respiratory pathogens. Among the six hCoVs identified to date, only hCoV-HKU1 has no defined cellular receptor. It is also unclear whether hemagglutinin-esterase (HE) protein plays a role in viral entry. In this study, we found that, similarly to other members of the group 2a CoVs, sialic acid moieties on glycoproteins are critical receptor determinants for the hCoV-HKU1 infection. Interestingly, the virus seems to employ a type of sialic acid different from those employed by other group 2a CoVs. In addition, we determined that the HKU1-HE protein is an O-acetylesterase and acts as a receptor-destroying enzyme (RDE) for hCoV-HKU1. This is the first study to demonstrate that hCoV-HKU1 uses certain types of O-acetylated sialic acid residues on glycoproteins to initiate the infection of host cells and that the HKU1-HE protein possesses sialate-O-acetylesterase RDE activity.

Research paper thumbnail of The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis

Journal of virology, 1999

The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-am... more The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-amino-terminal polyproteins, polyprotein 1a and polyprotein 1ab. The gene 1 polyproteins are processed by viral proteinases to yield at least 15 mature products, including a putative RNA helicase from polyprotein 1ab that is presumed to be involved in viral RNA synthesis. Antibodies directed against polypeptides encoded by open reading frame 1b were used to characterize the expression and processing of the MHV helicase and to define the relationship of helicase to the viral nucleocapsid protein (N) and to sites of viral RNA synthesis in MHV-infected cells. The antihelicase antibodies detected a 67-kDa protein in MHV-infected cells that was translated and processed throughout the virus life cycle. Processing of the 67-kDa helicase from polyprotein 1ab was abolished by E64d, a known inhibitor of the MHV 3C-like proteinase. When infected cells were probed for helicase by immunofluorescence la...

Research paper thumbnail of Mouse hepatitis virus 3C-like protease cleaves a 22-kilodalton protein from the open reading frame 1a polyprotein in virus-infected cells and in vitro

Journal of virology, 1998

The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11... more The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro t...

Research paper thumbnail of Mutational Analysis of MHV-A59 Replicase Protein-NSP10

Advances in Experimental Medicine and Biology, 2006

1. INTRODUCTION 22-kb replicase gene to yield two large polyproteins from two overlapping open re... more 1. INTRODUCTION 22-kb replicase gene to yield two large polyproteins from two overlapping open reading frames (ORF1a and ORF1b). Approximately 70% of the time ORF1a is translated to produce a 495-kDa polyprotein. About 30% of the time, ribosomal ...

Research paper thumbnail of Severe Acute Respiratory Syndrome Coronavirus Infection of Human Ciliated Airway Epithelia: Role of Ciliated Cells in Viral Spread in the Conducting Airways of the Lungs

Journal of Virology, 2005

Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of... more Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-con- verting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway

Research paper thumbnail of Renilla Luciferase as a Reporter to Assess SARS-CoV mRNA Transcription Regulation and Efficacy of ANTI-SARS-CoV Agents

Advances in Experimental Medicine and Biology, 2006

Research paper thumbnail of A comprehensive collection of systems biology data characterizing the host response to viral infection

Scientific Data, 2014

Research program was established by the U.S. National Institute of Allergy and Infectious Disease... more Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.

Research paper thumbnail of MHV-A59 Gene 1 Proteins are Associated with Two Distinct Membrane Populations

Advances in Experimental Medicine and Biology, 2001

Research paper thumbnail of The NSP2 Proteins of Mouse Hepatitis Virus and Sars Coronavirus are Dispensable for Viral Replication

Advances in Experimental Medicine and Biology, 2006

The results presented here demonstrate that the MHV and SARS-CoV nsp2 proteins are not required f... more The results presented here demonstrate that the MHV and SARS-CoV nsp2 proteins are not required for the production of infectious virus, for polyprotein expression or processing, or for viral replication complex formation in cell culture. The nsp2 protein domain resides in a region of the coronavirus replicase that is relatively nonconserved across coronaviruses. In fact, the size and amino acid sequence variability of nsp2 across the different coronaviruses has led some investigators to speculate that the nsp2 protein, along with the nsp1 and nsp3 proteins, may play host- and/or cell-specific roles in the virus life cycle. While this may be the case, it should be noted that nsp2, in some form, exists in all coronaviruses studied to date and likely plays a pivotal role in the viral life cycle. A previous study from our laboratory identified a coronavirus replicase protein that plays an important role in viral pathogenesis. Such may prove to be the case for nsp2, as well. Alternatively, beacuse nsp2 exists as a detectable precursor protein nsp2-3 prior to processing of nsp2 and nsp3 into mature proteins, nsp2 may play a critical adaptor/regulatory role for nsp3 function. Importantly, the viruses produced in this study provide a system by which the role of the nsp2 protein in viral infection can be characterized.

Research paper thumbnail of Sars Coronavirus Vaccine Development

Advances in Experimental Medicine and Biology, 2006

Coronavirus infections are associated with severe diseases of the lower respiratory and gastroint... more Coronavirus infections are associated with severe diseases of the lower respiratory and gastrointestinal tract in humans and animals, yet little is known about the underlying molecular mechanisms governing virulence and pathogenesis. Among the human coronaviruses, the etiologic ...

Research paper thumbnail of Altering SARS Coronavirus Frameshift Efficiency Affects Genomic and Subgenomic RNA Production

Viruses, 2013

In previous studies, differences in the amount of genomic and subgenomic RNA produced by coronavi... more In previous studies, differences in the amount of genomic and subgenomic RNA produced by coronaviruses with mutations in the programmed ribosomal frameshift signal of ORF1a/b were observed. It was not clear if these differences were due to changes in genomic sequence, the protein sequence or the frequency of frameshifting. Here, viruses with synonymous codon changes are shown to produce different ratios of genomic and subgenomic RNA. These findings demonstrate that the protein sequence is not the primary cause of altered genomic and subgenomic RNA production. The synonymous codon changes affect both the structure of the frameshift signal and frameshifting efficiency. Small differences in frameshifting efficiency result in dramatic differences in genomic RNA production and TCID 50 suggesting that the frameshifting frequency must stay above

Research paper thumbnail of Sars Cov Replication and Pathogenesis in Human Airway Airway Epithelial Cultures

Advances in Experimental Medicine and Biology, 2006

... Amy C. Sims, Boyd Yount, Susan E. Burkett, Ralph S. Baric, and Raymond J. Pickles* ... To gen... more ... Amy C. Sims, Boyd Yount, Susan E. Burkett, Ralph S. Baric, and Raymond J. Pickles* ... To generate recombinant SARS-CoV GFP, the F plasmid was mutated to replace ORF7a/b with the GFP cDNA as described previously.6 Following transfection of Vero E6 cells, GFP-positive ...

Research paper thumbnail of Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses

mBio, 2014

The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antivir... more The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediate...

Research paper thumbnail of Running Title: MHV nsp10 plays a critical role in polyprotein processing 3

Research paper thumbnail of SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium

Virus Research, 2008

SARS coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tra... more SARS coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The severe and sudden onset of symptoms, resulting in an atypical pneumonia with dry cough and persistent high fever in cases of severe acute respiratory virus brought to light the importance of coronaviruses as potentially lethal human pathogens and the identification of several zoonotic reservoirs has made the reemergence of new strains and future epidemics all the more possible. In this chapter, we describe the pathology of SARS-CoV infection in humans and explore the use of two models of the human conducting airway to develop a better understanding of the replication and pathogenesis of SARS-CoV in relevant in vitro systems. The first culture model is a human bronchial epithelial cell line Calu-3 that can be inoculated by viruses either as a non-polarized monolayer of cells or polarized cells with tight junctions and microvilli. The second model system, derived from primary cells isolated from human airway epithelium and grown on Transwells, form a pseudostratified mucociliary epithelium that recapitulates the morphological and physiological features of the human conducting airway in vivo. Experimental results using these lung epithelial cell models demonstrate that in contrast to the pathology reported in late stage cases SARS-CoV replicates to high titers in epithelial cells of the conducting airway. The SARS-CoV receptor, human angiotensin 1 converting enzyme 2 (hACE2), was detected exclusively on the apical surface of cells in polarized Calu-3 cells and human airway epithelial cultures (HAE), indicating that hACE2 was accessible by SARS-CoV after lumenal airway delivery. Furthermore, in HAE, hACE2 was exclusively localized to ciliated airway epithelial cells. In support of the hACE2 localization data, the most productive route of inoculation and progeny virion egress in both polarized Calu-3 and ciliated cells of HAE was the apical surface suggesting mechanisms to release large quantities of virus into the lumen of the human lung. Preincubation of the apical surface of cultures with antisera directed against hACE2 reduced viral titers by two logs while antisera against DC-SIGN/DC-SIGNR did not reduce viral replication levels suggesting that hACE2 is the primary receptor for entry of SARS-CoV into the ciliated cells of HAE cultures. To assess infectivity in ciliated airway cultures derived from susceptible animal species we generated a recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF 7a/7b) and insertion of the green fluorescent protein (GFP) resulting in SARS-CoV GFP. SARS-CoV GFP replicated to similar titers as wild type viruses in Vero E6, MA104, and CaCo2 cells. In addition, SARS-CoV replication in airway epithelial cultures generated from Golden Syrian hamster tracheas reached similar titers to the human cultures by 72 h post-infection. Efficient SARS-CoV infection of ciliated cell-types in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.

Research paper thumbnail of SARS coronavirus replicase proteins in pathogenesis

Virus Research, 2008

Much progress has been made in understanding the role of structural and accessory proteins in the... more Much progress has been made in understanding the role of structural and accessory proteins in the pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) infections. The SARS epidemic also brought new attention to the proteins translated from ORF1a and ORF1b of the input genome RNA, also known as the replicase/transcriptase gene. Evidence for change within the ORF1ab coding sequence during the SARS epidemic, as well as evidence from studies with other coronaviruses, indicates that it is likely that the ORF1ab proteins play roles in virus pathogenesis distinct from or in addition to functions directly involved in viral replication. Recent reverse genetic studies have confirmed that proteins of ORF1ab may be involved in cellular signaling and modification of cellular gene expression, as well as virulence by mechanisms yet to be determined. Thus, the evolution of the ORF1ab proteins may be determined as much by issues of host range and virulence as they are by specific requirements for intracellular replication.