Anaïs Barut - Academia.edu (original) (raw)
Uploads
Papers by Anaïs Barut
Photonics in Dermatology and Plastic Surgery 2019, Feb 26, 2019
An improved optical coherence tomography (OCT) technique called line-field confocal OCT (LC-OCT) ... more An improved optical coherence tomography (OCT) technique called line-field confocal OCT (LC-OCT) has been developed for high-resolution skin imaging. Combining the principles of time-domain OCT and confocal microscopy with line illumination and detection, LC-OCT acquires multiple A-scans in parallel with dynamic focusing. With a quasi isotropic resolution of ∼ 1 µm, the LC-OCT images reveal a comprehensive structural mapping of skin, in vivo, at the cellular level down to a depth of ∼ 500 µm. LC-OCT images of various skin lesions, including carcinomas and melanomas, are found to well correlate with histopathological images. LC-OCT could significantly improve clinical diagnostic accuracy, while reducing the number of biopsies of benign lesions.
Journal of Biomedical Optics
An optical technique called line-field confocal optical coherence tomography (LC-OCT) is introduc... more An optical technique called line-field confocal optical coherence tomography (LC-OCT) is introduced for high-resolution, noninvasive imaging of human skin in vivo. LC-OCT combines the principles of time-domain optical coherence tomography and confocal microscopy with line illumination and detection using a broadband laser and a line-scan camera. LC-OCT measures the echo-time delay and amplitude of light backscattered from cutaneous microstructures through low-coherence interferometry associated with confocal spatial filtering. Multiple A-scans are acquired simultaneously while dynamically adjusting the focus. The resulting crosssectional B-scan image is produced in real time at 10 frame∕s. With an isotropic spatial resolution of ∼1 μm, the LC-OCT images reveal a comprehensive structural mapping of skin at the cellular level down to a depth of ∼500 μm. LC-OCT has been applied to the imaging of various skin lesions, in vivo, including carcinomas and melanomas. LC-OCT images are found to strongly correlate with conventional histopathological images. The use of LC-OCT as an adjunct tool in medical practice could significantly improve clinical diagnostic accuracy while reducing the number of biopsies of benign lesions.
Optics Express, Dec 10, 2018
Photonics in Dermatology and Plastic Surgery 2019, Feb 26, 2019
An improved optical coherence tomography (OCT) technique called line-field confocal OCT (LC-OCT) ... more An improved optical coherence tomography (OCT) technique called line-field confocal OCT (LC-OCT) has been developed for high-resolution skin imaging. Combining the principles of time-domain OCT and confocal microscopy with line illumination and detection, LC-OCT acquires multiple A-scans in parallel with dynamic focusing. With a quasi isotropic resolution of ∼ 1 µm, the LC-OCT images reveal a comprehensive structural mapping of skin, in vivo, at the cellular level down to a depth of ∼ 500 µm. LC-OCT images of various skin lesions, including carcinomas and melanomas, are found to well correlate with histopathological images. LC-OCT could significantly improve clinical diagnostic accuracy, while reducing the number of biopsies of benign lesions.
Journal of Biomedical Optics
An optical technique called line-field confocal optical coherence tomography (LC-OCT) is introduc... more An optical technique called line-field confocal optical coherence tomography (LC-OCT) is introduced for high-resolution, noninvasive imaging of human skin in vivo. LC-OCT combines the principles of time-domain optical coherence tomography and confocal microscopy with line illumination and detection using a broadband laser and a line-scan camera. LC-OCT measures the echo-time delay and amplitude of light backscattered from cutaneous microstructures through low-coherence interferometry associated with confocal spatial filtering. Multiple A-scans are acquired simultaneously while dynamically adjusting the focus. The resulting crosssectional B-scan image is produced in real time at 10 frame∕s. With an isotropic spatial resolution of ∼1 μm, the LC-OCT images reveal a comprehensive structural mapping of skin at the cellular level down to a depth of ∼500 μm. LC-OCT has been applied to the imaging of various skin lesions, in vivo, including carcinomas and melanomas. LC-OCT images are found to strongly correlate with conventional histopathological images. The use of LC-OCT as an adjunct tool in medical practice could significantly improve clinical diagnostic accuracy while reducing the number of biopsies of benign lesions.
Optics Express, Dec 10, 2018