Andre Choo - Academia.edu (original) (raw)

Related Authors

Dana Bardolph

Jia Chen

Universitetet i Sørøst-Norge / University of South-Eastern Norway

Uploads

Papers by Andre Choo

Research paper thumbnail of Characterization of Epithelial Cell Adhesion Molecule as a Surface Marker on Undifferentiated Human Embryonic Stem Cells  

Stem Cells, 2009

Human embryonic stem cells (hESCs) have the capacity to remain pluripotent and self-renew indefin... more Human embryonic stem cells (hESCs) have the capacity to remain pluripotent and self-renew indefinitely. To discover novel players in the maintenance of hESCs, we have previously reported the generation of monoclonal antibodies that bind to cell surface markers on hESCs, and not to mouse embryonic stem cells or differentiated embryoid bodies. In this study, we have identified the antigen target of one such monoclonal antibody as the epithelial cell adhesion molecule (EpCAM). In undifferentiated hESCs, EpCAM is localized to Octamer 4 (OCT4)-positive pluripotent cells, and its expression is down-regulated upon differentiation. To further understand its biological function in hESCs, endogenous EpCAM expression was silenced using small interfering RNA. EpCAM knockdown had marginal negative effects on OCT4 and TRA-1-60 expression, however cell proliferation was decreased by >40%. Examination of lineage marker expression showed marked upregulation of endoderm and mesoderm genes in EpCAM...

Research paper thumbnail of Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells

Biomaterials, 2010

Human embryonic stem cells (hESCs) have the potential to offer a virtually unlimited source of ch... more Human embryonic stem cells (hESCs) have the potential to offer a virtually unlimited source of chondrogenic cells for use in cartilage repair and regeneration. We have recently shown that expandable chondrogenic cells can be derived from hESCs under selective growth factor-responsive conditions. In this study, we explore the potential of these hESC-derived chondrogenic cells to produce an extracellular matrix (ECM)-enriched cartilaginous tissue construct when cultured in hyaluronic acid (HA)-based hydrogel, and further investigated the long-term reparative ability of the resulting hESC-derived chondrogenic cell-engineered cartilage (HCCEC) in an osteochondral defect model. We hypothesized that HCCEC can provide a functional template capable of undergoing orderly remodeling during the repair of critical-sized osteochondral defects (1.5 mm in diameter, 1 mm depth into the subchondral bone) in a rat model. In the process of repair, we observed an orderly spatial-temporal remodeling of HCCEC over 12 weeks into osteochondral tissue, with characteristic architectural features including a hyaline-like neocartilage layer with good surface regularity and complete integration with the adjacent host cartilage and a regenerated subchondral bone. By 12 weeks, the HCCEC-regenerated osteochondral tissue resembled closely that of age-matched unoperated native control, while only fibrous tissue filled in the control defects which left empty or treated with hydrogel alone. Here we demonstrate that transplanted hESC-derived chondrogenic cells maintain long-term viability with no evidence of tumorigenicity, providing a safe, highly-efficient and practical strategy of applying hESCs for cartilage tissue engineering.

Research paper thumbnail of Characterization of Epithelial Cell Adhesion Molecule as a Surface Marker on Undifferentiated Human Embryonic Stem Cells  

Stem Cells, 2009

Human embryonic stem cells (hESCs) have the capacity to remain pluripotent and self-renew indefin... more Human embryonic stem cells (hESCs) have the capacity to remain pluripotent and self-renew indefinitely. To discover novel players in the maintenance of hESCs, we have previously reported the generation of monoclonal antibodies that bind to cell surface markers on hESCs, and not to mouse embryonic stem cells or differentiated embryoid bodies. In this study, we have identified the antigen target of one such monoclonal antibody as the epithelial cell adhesion molecule (EpCAM). In undifferentiated hESCs, EpCAM is localized to Octamer 4 (OCT4)-positive pluripotent cells, and its expression is down-regulated upon differentiation. To further understand its biological function in hESCs, endogenous EpCAM expression was silenced using small interfering RNA. EpCAM knockdown had marginal negative effects on OCT4 and TRA-1-60 expression, however cell proliferation was decreased by >40%. Examination of lineage marker expression showed marked upregulation of endoderm and mesoderm genes in EpCAM...

Research paper thumbnail of Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells

Biomaterials, 2010

Human embryonic stem cells (hESCs) have the potential to offer a virtually unlimited source of ch... more Human embryonic stem cells (hESCs) have the potential to offer a virtually unlimited source of chondrogenic cells for use in cartilage repair and regeneration. We have recently shown that expandable chondrogenic cells can be derived from hESCs under selective growth factor-responsive conditions. In this study, we explore the potential of these hESC-derived chondrogenic cells to produce an extracellular matrix (ECM)-enriched cartilaginous tissue construct when cultured in hyaluronic acid (HA)-based hydrogel, and further investigated the long-term reparative ability of the resulting hESC-derived chondrogenic cell-engineered cartilage (HCCEC) in an osteochondral defect model. We hypothesized that HCCEC can provide a functional template capable of undergoing orderly remodeling during the repair of critical-sized osteochondral defects (1.5 mm in diameter, 1 mm depth into the subchondral bone) in a rat model. In the process of repair, we observed an orderly spatial-temporal remodeling of HCCEC over 12 weeks into osteochondral tissue, with characteristic architectural features including a hyaline-like neocartilage layer with good surface regularity and complete integration with the adjacent host cartilage and a regenerated subchondral bone. By 12 weeks, the HCCEC-regenerated osteochondral tissue resembled closely that of age-matched unoperated native control, while only fibrous tissue filled in the control defects which left empty or treated with hydrogel alone. Here we demonstrate that transplanted hESC-derived chondrogenic cells maintain long-term viability with no evidence of tumorigenicity, providing a safe, highly-efficient and practical strategy of applying hESCs for cartilage tissue engineering.

Log In