Andreas Schlundt - Academia.edu (original) (raw)

Uploads

Papers by Andreas Schlundt

Research paper thumbnail of RNA recognition by Roquin in posttranscriptional gene regulation

Wiley Interdisciplinary Reviews: RNA, 2016

Posttranscriptional regulation of gene expression plays a central role in the initiation of innat... more Posttranscriptional regulation of gene expression plays a central role in the initiation of innate and adaptive immune responses. This is exemplified by the protein Roquin, which has attracted great interest during the past decade owing to its ability to prevent autoimmunity. Roquin controls T-cell activation and T helper cell differentiation by limiting the induced expression of costimulatory receptors on the surface of T cells. It does so by recognizing cis regulatory RNA-hairpin elements in the 3' UTR of target transcripts via its ROQ domain-a novel RNA-binding fold-and triggering their degradation through recruitment of factors that mediate deadenylation and decapping. Recent structural studies have revealed molecular details of the recognition of RNA hairpin structures by the ROQ domain. Surprisingly, it was found that Roquin mainly relies on shape-specific recognition of the RNA. This observation implies that a much broader range of RNA motifs could interact with the protein, but it also complicates systematic searches for novel mRNA targets of Roquin. Thus, large-scale approaches, such as crosslinking and immunoprecipitation or systematic evolution of ligands by exponential enrichment experiments coupled with next-generation sequencing, will be required to identify the complete spectrum of its target RNAs. Together with structural analyses of their binding modes, this will enable us to unravel the intricate complexity of 3' UTR regulation by Roquin and other trans-acting factors. Here, we review our current understanding of Roquin-RNA interactions and their role for Roquin function. For further resources related to this article, please visit the WIREs website.

Research paper thumbnail of Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli

Journal of molecular biology, Jan 12, 2015

The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family o... more The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression fro...

Research paper thumbnail of Proline-rich sequence recognition: II. Proteomics analysis of Tsg101 ubiquitin-E2-like variant (UEV) interactions

Molecular & cellular proteomics : MCP, 2009

The tumor maintenance protein Tsg101 has recently gained much attention because of its involvemen... more The tumor maintenance protein Tsg101 has recently gained much attention because of its involvement in endosomal sorting, virus release, cytokinesis, and cancerogenesis. The ubiquitin-E2-like variant (UEV) domain of the protein interacts with proline-rich sequences of target proteins that contain P(S/T)AP amino acid motifs and weakly binds to the ubiquitin moiety of proteins committed to sorting or degradation. Here we performed peptide spot analysis and phage display to refine the peptide binding specificity of the Tsg101 UEV domain. A mass spectrometric proteomics approach that combines domain-based pulldown experiments, binding site inactivation, and stable isotope labeling by amino acids in cell culture (SILAC) was then used to delineate the relative importance of the peptide and ubiquitin binding sites. Clearly "PTAP" interactions dominate target recognition, and we identified several novel binders as for example the poly(A)-binding protein 1 (PABP1), Sec24b, NFkappaB2...

Research paper thumbnail of Zukünftige Brandschutzbemessung von schlanken Kalksandstein-Wänden mit deutlich höheren Auflasten

Research paper thumbnail of Bidirectional binding of invariant chain peptides to an MHC class II molecule

Proceedings of the National Academy of Sciences of the United States of America, Jan 21, 2010

T-cell recognition of peptides bound to MHC class II (MHCII) molecules is a central event in cell... more T-cell recognition of peptides bound to MHC class II (MHCII) molecules is a central event in cell-mediated adaptive immunity. The current paradigm holds that prebound class II-associated invariant chain peptides (CLIP) and all subsequent antigens maintain a canonical orientation in the MHCII binding groove. Here we provide evidence for MHCII-bound CLIP inversion. NMR spectroscopy demonstrates that the interconversion from the canonical to the inverse alignment is a dynamic process, and X-ray crystallography shows that conserved MHC residues form a hydrogen bond network with the peptide backbone in both orientations. The natural catalyst HLA-DM accelerates peptide reorientation and the exchange of either canonically or inversely bound CLIP against antigenic peptide. Thus, noncanonical MHC-CLIP displays the hallmarks of a structurally and functionally intact antigen-presenting complex.

Research paper thumbnail of Characterization of Structural Features Controlling the Receptiveness of Empty Class II MHC Molecules

PLoS ONE, 2011

MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens ... more MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying ''non-receptiveness.'' Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the a-helix of the b1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues aQ9 and bN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study.

Research paper thumbnail of Flipped CLIP orientation in the MHC class II binding groove

Molecular Immunology, 2012

Research paper thumbnail of Proline-rich Sequence Recognition: I. MARKING GYF AND WW DOMAIN ASSEMBLY SITES IN EARLY SPLICEOSOMAL COMPLEXES

Molecular & Cellular Proteomics, 2009

Proline-rich sequences (PRS) and their recognition domains have emerged as transposable protein i... more Proline-rich sequences (PRS) and their recognition domains have emerged as transposable protein interaction modules during eukaryotic evolution. They are especially abundant in proteins associated with pre-mRNA splicing and likely assist in the formation of the spliceosome by binding to GYF and WW domains. Here we profile PRS-mediated interactions of the CD2BP2/52K GYF domain by a site-specific peptide inhibitor and stable isotope labeling/mass spectrometry analysis. Several PRS hubs with multiple proline-rich motifs exist that can recruit GYF and/or WW domains. Saturating the PRS sites by an isolated GYF domain inhibited splicing at the level of A complex formation. The interactions mediated by PRS are therefore important to the early phases of spliceosomal assembly.

Research paper thumbnail of Peptide Linkage to the α-Subunit of MHCII Creates a Stably Inverted Antigen Presentation Complex

Journal of Molecular Biology, 2012

Class II proteins of the major histocompatibility complex (MHCII) typically present exogenous ant... more Class II proteins of the major histocompatibility complex (MHCII) typically present exogenous antigenic peptides to cognate T cell receptors of CD4-T lymphocytes. The exact conformation of peptide-MHCII complexes (pMHCII) can vary depending on the length, register and orientation of the bound peptide. We have recently found the self-peptide CLIP (class-II-associated invariant chain-derived peptide) to adopt a dynamic bidirectional binding mode with regard to the human MHCII HLA-DR1 (HLA, human leukocyte antigen). We suggested that inversely bound peptides could activate specific T cell clones in the context of autoimmunity. As a first step to prove this hypothesis, pMHC complexes restricted to either the canonical or the inverted peptide orientation have to be constructed. Here, we show that genetically encoded linkage of CLIP and two other antigenic peptides to the HLA-DR1 α-chain results in stable complexes with inversely bound ligands. Two-dimensional NMR and biophysical analyses indicate that the CLIP-bound pMHC(inv) complex (pMHC(inv), inverted MHCII-peptide complex) displays high thermodynamic stability but still allows for the exchange against higher-affinity viral antigen. Complemented by comparable data on a corresponding β-chain-fused canonical HLA-DR1/CLIP complex, we further show that linkage of CLIP leads to a binding mode exactly the same as that of the corresponding unlinked constructs. We suggest that our approach constitutes a general strategy to create pMHC(inv) complexes. Such engineering is needed to create orientation-specific antibodies and raise T cells to study phenomena of autoimmunity caused by isomeric pMHCs.

Research paper thumbnail of NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts

Journal of Cell Science, 2007

Research paper thumbnail of A Xenon-129 Biosensor for Monitoring MHC-Peptide Interactions

Angewandte Chemie International Edition, 2009

Research paper thumbnail of Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation

Nature Structural & Molecular Biology, 2014

Here we show that the N-terminal ROQ domain from mouse roquin adopts an extended winged-helix (WH... more Here we show that the N-terminal ROQ domain from mouse roquin adopts an extended winged-helix (WH) fold, which is sufficient for binding to the constitutive decay element (CDE) in the Tnf 3′ UTR. The crystal structure of the ROQ domain in complex with a prototypical CDE RNA stem-loop reveals tight recognition of the RNA stem and its triloop. Surprisingly, roquin uses mainly non-sequence-specific contacts to the RNA, thus suggesting a relaxed CDE consensus and implicating a broader spectrum of target mRNAs than previously anticipated.

Research paper thumbnail of RNA recognition by Roquin in posttranscriptional gene regulation

Wiley Interdisciplinary Reviews: RNA, 2016

Posttranscriptional regulation of gene expression plays a central role in the initiation of innat... more Posttranscriptional regulation of gene expression plays a central role in the initiation of innate and adaptive immune responses. This is exemplified by the protein Roquin, which has attracted great interest during the past decade owing to its ability to prevent autoimmunity. Roquin controls T-cell activation and T helper cell differentiation by limiting the induced expression of costimulatory receptors on the surface of T cells. It does so by recognizing cis regulatory RNA-hairpin elements in the 3' UTR of target transcripts via its ROQ domain-a novel RNA-binding fold-and triggering their degradation through recruitment of factors that mediate deadenylation and decapping. Recent structural studies have revealed molecular details of the recognition of RNA hairpin structures by the ROQ domain. Surprisingly, it was found that Roquin mainly relies on shape-specific recognition of the RNA. This observation implies that a much broader range of RNA motifs could interact with the protein, but it also complicates systematic searches for novel mRNA targets of Roquin. Thus, large-scale approaches, such as crosslinking and immunoprecipitation or systematic evolution of ligands by exponential enrichment experiments coupled with next-generation sequencing, will be required to identify the complete spectrum of its target RNAs. Together with structural analyses of their binding modes, this will enable us to unravel the intricate complexity of 3' UTR regulation by Roquin and other trans-acting factors. Here, we review our current understanding of Roquin-RNA interactions and their role for Roquin function. For further resources related to this article, please visit the WIREs website.

Research paper thumbnail of Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli

Journal of molecular biology, Jan 12, 2015

The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family o... more The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression fro...

Research paper thumbnail of Proline-rich sequence recognition: II. Proteomics analysis of Tsg101 ubiquitin-E2-like variant (UEV) interactions

Molecular & cellular proteomics : MCP, 2009

The tumor maintenance protein Tsg101 has recently gained much attention because of its involvemen... more The tumor maintenance protein Tsg101 has recently gained much attention because of its involvement in endosomal sorting, virus release, cytokinesis, and cancerogenesis. The ubiquitin-E2-like variant (UEV) domain of the protein interacts with proline-rich sequences of target proteins that contain P(S/T)AP amino acid motifs and weakly binds to the ubiquitin moiety of proteins committed to sorting or degradation. Here we performed peptide spot analysis and phage display to refine the peptide binding specificity of the Tsg101 UEV domain. A mass spectrometric proteomics approach that combines domain-based pulldown experiments, binding site inactivation, and stable isotope labeling by amino acids in cell culture (SILAC) was then used to delineate the relative importance of the peptide and ubiquitin binding sites. Clearly "PTAP" interactions dominate target recognition, and we identified several novel binders as for example the poly(A)-binding protein 1 (PABP1), Sec24b, NFkappaB2...

Research paper thumbnail of Zukünftige Brandschutzbemessung von schlanken Kalksandstein-Wänden mit deutlich höheren Auflasten

Research paper thumbnail of Bidirectional binding of invariant chain peptides to an MHC class II molecule

Proceedings of the National Academy of Sciences of the United States of America, Jan 21, 2010

T-cell recognition of peptides bound to MHC class II (MHCII) molecules is a central event in cell... more T-cell recognition of peptides bound to MHC class II (MHCII) molecules is a central event in cell-mediated adaptive immunity. The current paradigm holds that prebound class II-associated invariant chain peptides (CLIP) and all subsequent antigens maintain a canonical orientation in the MHCII binding groove. Here we provide evidence for MHCII-bound CLIP inversion. NMR spectroscopy demonstrates that the interconversion from the canonical to the inverse alignment is a dynamic process, and X-ray crystallography shows that conserved MHC residues form a hydrogen bond network with the peptide backbone in both orientations. The natural catalyst HLA-DM accelerates peptide reorientation and the exchange of either canonically or inversely bound CLIP against antigenic peptide. Thus, noncanonical MHC-CLIP displays the hallmarks of a structurally and functionally intact antigen-presenting complex.

Research paper thumbnail of Characterization of Structural Features Controlling the Receptiveness of Empty Class II MHC Molecules

PLoS ONE, 2011

MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens ... more MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying ''non-receptiveness.'' Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the a-helix of the b1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues aQ9 and bN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study.

Research paper thumbnail of Flipped CLIP orientation in the MHC class II binding groove

Molecular Immunology, 2012

Research paper thumbnail of Proline-rich Sequence Recognition: I. MARKING GYF AND WW DOMAIN ASSEMBLY SITES IN EARLY SPLICEOSOMAL COMPLEXES

Molecular & Cellular Proteomics, 2009

Proline-rich sequences (PRS) and their recognition domains have emerged as transposable protein i... more Proline-rich sequences (PRS) and their recognition domains have emerged as transposable protein interaction modules during eukaryotic evolution. They are especially abundant in proteins associated with pre-mRNA splicing and likely assist in the formation of the spliceosome by binding to GYF and WW domains. Here we profile PRS-mediated interactions of the CD2BP2/52K GYF domain by a site-specific peptide inhibitor and stable isotope labeling/mass spectrometry analysis. Several PRS hubs with multiple proline-rich motifs exist that can recruit GYF and/or WW domains. Saturating the PRS sites by an isolated GYF domain inhibited splicing at the level of A complex formation. The interactions mediated by PRS are therefore important to the early phases of spliceosomal assembly.

Research paper thumbnail of Peptide Linkage to the α-Subunit of MHCII Creates a Stably Inverted Antigen Presentation Complex

Journal of Molecular Biology, 2012

Class II proteins of the major histocompatibility complex (MHCII) typically present exogenous ant... more Class II proteins of the major histocompatibility complex (MHCII) typically present exogenous antigenic peptides to cognate T cell receptors of CD4-T lymphocytes. The exact conformation of peptide-MHCII complexes (pMHCII) can vary depending on the length, register and orientation of the bound peptide. We have recently found the self-peptide CLIP (class-II-associated invariant chain-derived peptide) to adopt a dynamic bidirectional binding mode with regard to the human MHCII HLA-DR1 (HLA, human leukocyte antigen). We suggested that inversely bound peptides could activate specific T cell clones in the context of autoimmunity. As a first step to prove this hypothesis, pMHC complexes restricted to either the canonical or the inverted peptide orientation have to be constructed. Here, we show that genetically encoded linkage of CLIP and two other antigenic peptides to the HLA-DR1 α-chain results in stable complexes with inversely bound ligands. Two-dimensional NMR and biophysical analyses indicate that the CLIP-bound pMHC(inv) complex (pMHC(inv), inverted MHCII-peptide complex) displays high thermodynamic stability but still allows for the exchange against higher-affinity viral antigen. Complemented by comparable data on a corresponding β-chain-fused canonical HLA-DR1/CLIP complex, we further show that linkage of CLIP leads to a binding mode exactly the same as that of the corresponding unlinked constructs. We suggest that our approach constitutes a general strategy to create pMHC(inv) complexes. Such engineering is needed to create orientation-specific antibodies and raise T cells to study phenomena of autoimmunity caused by isomeric pMHCs.

Research paper thumbnail of NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts

Journal of Cell Science, 2007

Research paper thumbnail of A Xenon-129 Biosensor for Monitoring MHC-Peptide Interactions

Angewandte Chemie International Edition, 2009

Research paper thumbnail of Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation

Nature Structural & Molecular Biology, 2014

Here we show that the N-terminal ROQ domain from mouse roquin adopts an extended winged-helix (WH... more Here we show that the N-terminal ROQ domain from mouse roquin adopts an extended winged-helix (WH) fold, which is sufficient for binding to the constitutive decay element (CDE) in the Tnf 3′ UTR. The crystal structure of the ROQ domain in complex with a prototypical CDE RNA stem-loop reveals tight recognition of the RNA stem and its triloop. Surprisingly, roquin uses mainly non-sequence-specific contacts to the RNA, thus suggesting a relaxed CDE consensus and implicating a broader spectrum of target mRNAs than previously anticipated.