Andrew Kropinski - Academia.edu (original) (raw)

Papers by Andrew Kropinski

Research paper thumbnail of Bacteriophage P 22 Salmonella Sequence of the Genome of

The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate,... more The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate, serotype-converting bacteriophage P22 has been completed. The genome is 41,724 bp with an overall moles percent GC content of 47.1%. Numerous examples of potential integration host factor and C1-binding sites were identified in the sequence. In addition, five potential rho-independent terminators were discovered. Sixty-five genes were identified and annotated. While many of these had been described previously, we have added several new ones, including the genes involved in serotype conversion and late control. Two of the serotype conversion gene products show considerable sequence relatedness to GtrA and-B from Shigella phages SfII, SfV, and SfX. We have cloned the serotype-converting cassette (gtrABC) and demonstrated that it results in Salmonella serovar Typhimurium LT2 cells which express antigen O1. Many of the putative proteins show sequence relatedness to proteins from a great variety of other phages, supporting the hypothesis that this phage has evolved through the recombinational exchange of genetic information with other viruses.

Research paper thumbnail of Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows

Scientific reports, 2018

Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic E... more Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic Escherichia coli (MPEC) is related to an acute mastitis and its treatment is still based on the use of antibiotics. In the era of antimicrobial resistance (AMR), bacterial viruses (bacteriophages) present as an efficient treatment or prophylactic option. However, this makes it essential that its genetic structure, stability and interaction with the host immune system be thoroughly characterized. The present study analyzed a novel, broad host-range anti-mastitis agent, the T4virus vB_EcoM-UFV13 in genomic terms, and its activity against a MPEC strain in an experimental E. coli-induced mastitis mouse model. 4,975 Single Nucleotide Polymorphisms (SNPs) were assigned between vB_EcoM-UFV13 and E. coli phage T4 genomes with high impact on coding sequences (CDS) (37.60%) for virion proteins. Phylogenetic trees and genome analysis supported a recent infection mix between vB_EcoM-UFV13 and Shigell...

Research paper thumbnail of Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections

Frontiers in microbiology, 2016

Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections ... more Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages' ability to prevent catheter's colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic ...

Research paper thumbnail of Endemic bacteriophages: a cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals

Virology Journal, 2012

Background One of the most effective targets for control of zoonotic foodborne pathogens in the f... more Background One of the most effective targets for control of zoonotic foodborne pathogens in the farm to fork continuum is their elimination in food animals destined for market. Phage therapy for Escherichia coli O157:H7 in ruminants, the main animal reservoir of this pathogen, is a popular research topic. Since phages active against this pathogen may be endemic in host animals and their environment, they may emerge during trials of phage therapy or other interventions, rendering interpretation of trials problematic. Methods During separate phage therapy trials, sheep and cattle inoculated with 109 to 1010 CFU of E. coli O157:H7 soon began shedding phages dissimilar in plaque morphology to the administered therapeutic phages. None of the former was previously identified in the animals or in their environment. The dissimilar “rogue” phage was isolated and characterized by host range, ultrastructure, and genomic and proteomic analyses. Results The “rogue” phage (Phage vB_EcoS_Rogue1) i...

Research paper thumbnail of Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A

Virology Journal, 2011

Background Phage ϕIBB-PF7A is a T7-like bacteriophage capable of infecting several Pseudomonas fl... more Background Phage ϕIBB-PF7A is a T7-like bacteriophage capable of infecting several Pseudomonas fluorescens dairy isolates and is extremely efficient in lysing this bacterium even when growing in biofilms attached to surfaces. This work describes the complete genome sequence of this phage. Results The genome consists of a linear double-stranded DNA of 40,973 bp, with 985 bp long direct terminal repeats and a GC content of approximately 56%. There are 52 open reading frames which occupy 94.6% of the genome ranging from 137 to 3995 nucleotides. Twenty eight (46.7%) of the proteins encoded by this virus exhibit sequence similarity to coliphage T7 proteins while 34 (81.0%) are similar to proteins of Pseudomonas phage gh-1. Conclusions That this phage is closely related to Pseudomonas putida phage gh-1 and coliphage T7 places it in the "T7-like viruses" genus of the subfamily Autographivirinae within the family Podoviridae. Compared to the genome of gh-1, the sequence of ϕIBB-PF...

Research paper thumbnail of The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1

Virology Journal, 2009

Based upon whole genome and proteome analysis, Escherichia coli O157:H7-specific bacteriophage (p... more Based upon whole genome and proteome analysis, Escherichia coli O157:H7-specific bacteriophage (phage) wV8 belongs to the new myoviral genus, "the Felix O1-like viruses" along with Salmonella phage Felix O1 and Erwinia amylovora phage φEa21-4. The genome characteristics of phage wV8 (size 88.49 kb, mol%G+C 38.9, 138 ORFs, 23 tRNAs) are very similar to those of phage Felix O1 (86.16 kb, 39.0 mol%G+C, 131 ORFs and 22 tRNAs) and, indeed most of the proteins have their closest homologs within Felix O1. Approximately one-half of the Escherichia coli O157:H7 mutants resistant to phage wV8 still serotype as O157:H7 indicating that this phage may recognize, like coliphage T4, two different surface receptors: lipopolysaccharide and, perhaps, an outer membrane protein.

Research paper thumbnail of Characterization of a ViI-like Phage Specific to Escherichia coli O157:H7

Virology Journal, 2011

Phage vB_EcoM_CBA120 (CBA120), isolated against Escherichia coli O157:H7 from a cattle feedlot, i... more Phage vB_EcoM_CBA120 (CBA120), isolated against Escherichia coli O157:H7 from a cattle feedlot, is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and none targeting E. coli have been described in the literature. The genome of CBA120 has been fully sequenced and is highly similar to those of both ViI and the Shigella phage AG3. The core set of structural and replication-related proteins of CBA120 are homologous to those from T-even phages, but generally are more closely related to those from T4-like phages of Vibrio, Aeromonas and cyanobacteria than those of the Enterobacteriaceae. The baseplate and method of adhesion to the host are, however, very different from those of either T4 or the cyanophages. None of the outer baseplate proteins are conserved. Instead of T4's long and short tail fibers, CBA120, like ViI, encodes tail spikes related to those normally seen on podoviruses. The 158 kb genome, like that of T4, is circularly permuted and terminally redundant, but unlike T4 CBA120 does not substitute hmdCyt for cytosine in its DNA. However, in contrast to other coliphages, CBA120 and related coliphages we have isolated cannot incorporate 3 H-thymidine (3 H-dThd) into their DNA. Protein sequence comparisons cluster the putative "thymidylate synthase" of CBA120, ViI and AG3 much more closely with those of Delftia phage W-14, Bacillus subtilis phage SPO1, and Pseudomonas phage YuA, all known to produce and incorporate hydroxymethyluracil (hmdUra).

Research paper thumbnail of Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh

mBio, 2011

Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera ep... more Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the I nternational Centre for Diarrhoeal Disease Research, Bangladesh c holera p hage 1 ) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence o...

Research paper thumbnail of Complete Genome Sequence of Cronobacter sakazakii Bacteriophage CR3

Journal of Virology, 2012

Due to the high risk of Cronobacter sakazakii infection in infants fed powdered milk formula and ... more Due to the high risk of Cronobacter sakazakii infection in infants fed powdered milk formula and the emergence of antibiotic-resistant strains, an alternative biocontrol agent using bacteriophage is needed to control this pathogen. To further the development of such an agent, the C. sakazakii -targeting bacteriophage CR3 was isolated and its genome was completely sequenced. Here, we announce the genomic analysis results of the largest C. sakazakii phage known to date and report the major findings from the genome annotation.

Research paper thumbnail of Sequence of the Genome of Salmonella Bacteriophage P22

Journal of Bacteriology, 2000

The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate,... more The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate, serotype-converting bacteriophage P22 has been completed. The genome is 41,724 bp with an overall moles percent GC content of 47.1%. Numerous examples of potential integration host factor and C1-binding sites were identified in the sequence. In addition, five potential rho-independent terminators were discovered. Sixty-five genes were identified and annotated. While many of these had been described previously, we have added several new ones, including the genes involved in serotype conversion and late control. Two of the serotype conversion gene products show considerable sequence relatedness to GtrA and -B from Shigella phages SfII, SfV, and SfX. We have cloned the serotype-converting cassette ( gtrABC ) and demonstrated that it results in Salmonella serovar Typhimurium LT2 cells which express antigen O1. Many of the putative proteins show sequence relatedness to proteins from a great ...

Research paper thumbnail of Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021

Archives of Virology, 2021

In this article, we – the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of... more In this article, we – the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) – summarise the results of our activities for the period March 2020 – March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).

Research paper thumbnail of From Orphan Phage to a Proposed New Family–The Diversity of N4-Like Viruses

Antibiotics, 2020

Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long t... more Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long time. It encodes an extremely large virion-associated RNA polymerase unique for bacterial viruses that became characteristic for this group. In recent years, due to new and relatively inexpensive sequencing techniques the number of publicly available phage genome sequences expanded rapidly. This revealed new members of the N4-like phage group, from 33 members in 2015 to 115 N4-like viruses in 2020. Using new technologies and methods for classification, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) has moved the classification and taxonomy of bacterial viruses from mere morphological approaches to genomic and proteomic methods. The analysis of 115 N4-like genomes resulted in a huge reassessment of this group and the proposal of a new family “Schitoviridae”, including eight subfamilies and numerous new genera.

Research paper thumbnail of The Sequence of Two Bacteriophages with Hypermodified Bases Reveals Novel Phage-Host Interactions

Viruses, Apr 24, 2018

Bacteriophages SP-15 and ΦW-14 are members of the infecting and (formerly ) , respectively. W... more Bacteriophages SP-15 and ΦW-14 are members of the infecting and (formerly ) , respectively. What links them is that in both cases, approximately 50% of the thymine residues are replaced by hypermodified bases. The consequence of this is that the physico-chemical properties of the DNA are radically altered (melting temperature (Tm), buoyant density and susceptibility to restriction endonucleases). Using 454 pyrosequencing technology, we sequenced the genomes of both viruses. Phage ΦW-14 possesses a 157-kb genome (56.3% GC) specifying 236 proteins, while SP-15 is larger at 222 kb (38.6 mol % G + C) and encodes 318 proteins. In both cases, the phages can be considered genomic singletons since they do not possess BLASTn homologs. While no obvious genes were identified as being responsible for the modified base in ΦW-14, SP-15 contains a cluster of genes obviously involved in carbohydrate metabolism.

Research paper thumbnail of Yersinia enterocolitica specific infection by bacteriophages TG1 and ϕR1-RT is dependent on temperature regulated expression of the phage host receptor OmpF

Applied and environmental microbiology, Sep 24, 2016

Bacteriophages present huge potential both as a resource for developing novel tools for bacterial... more Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This is also valid for bacteriophages specific for Yersinia enterocolitica. To increase our knowledge on Y. enterocolitica -specific phages we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp respectively. Their genomes encode 262 putative coding sequences and 4 tRNAs genes, and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed with TG1 and ϕR1-RT as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica, and display lytic activity against the epidemiologi...

Research paper thumbnail of Comparative analysis of multiple inducible phages from Mannheimia haemolytica

BMC Microbiology, 2015

Background: Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory... more Background: Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory tract of cattle that can play a role in bovine respiratory disease. Prophages are common in the M. haemolytica genome and contribute significantly to host diversity. The objective of this research was to undertake comparative genomic analysis of phages induced from strains of M. haemolytica serotype A1 (535A and 2256A), A2 (587A and 1127A) and A6 (1152A and 3927A).

Research paper thumbnail of A Suggested New Bacteriophage Genus, "Kp34likevirus", within the Autographivirinae Subfamily of Podoviridae

Viruses, Jan 7, 2015

Klebsiella pneumoniae phages vB_KpnP_SU503 (SU503) and vB_KpnP_SU552A (SU552A) are virulent virus... more Klebsiella pneumoniae phages vB_KpnP_SU503 (SU503) and vB_KpnP_SU552A (SU552A) are virulent viruses belonging to the Autographivirinae subfamily of Podoviridae that infect and kill multi-resistant K. pneumoniae isolates. Phages SU503 and SU552A show high pairwise nucleotide identity to Klebsiella phages KP34 (NC_013649), F19 (NC_023567) and NTUH-K2044-K1-1 (NC_025418). Bioinformatic analysis of these phage genomes show high conservation of gene arrangement and gene content, conserved catalytically active residues of their RNA polymerase, a common and specific lysis cassette, and form a joint cluster in phylogenetic analysis of their conserved genes. Also, we have performed biological characterization of the burst size, latent period, host specificity (together with KP34 and NTUH-K2044-K1-1), morphology, and structural genes as well as sensitivity testing to various conditions. Based on the analyses of these phages, the creation of a new phage genus is suggested within the Autographi...

Research paper thumbnail of Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms

Viruses, 2012

Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial i... more Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This

Research paper thumbnail of A proposed new bacteriophage subfamily: “Jerseyvirinae”

Archives of Virology, 2015

Disclaimer UWE has obtained warranties from all depositors as to their title in the material depo... more Disclaimer UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited. UWE makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights. UWE accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

Research paper thumbnail of The genome of ε15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage

Virology, 2007

The genome sequence of the Salmonella enterica serovar Anatum-specific, serotype-converting bacte... more The genome sequence of the Salmonella enterica serovar Anatum-specific, serotype-converting bacteriophage ε15 has been completed. The nonredundant genome contains 39,671 bp and 51 putative genes. It most closely resembles the genome of φV10, an Escherichia coli O157:H7specific temperate phage, with which it shares 36 related genes. More distant relatives include the Burkholderia cepacia-specific phage, BcepC6B (8 similar genes), the Bordetella bronchiseptica-specific phage, BPP-1 (8 similar genes) and the Photobacterium profundum prophage, P Pφpr1 (6 similar genes). ε15 gene identifications based on homologies with known gene families include the terminase small and large subunits, integrase, endolysin, two holins, two DNA methylase enzymes (one adenine-specific and one cytosine-specific) and a RecT-like enzyme. Genes identified experimentally include those coding for the serotype conversion proteins, the tail fiber, the major capsid protein and the major repressor. ε15's attP site and the Salmonella attB site with which it interacts during lysogenization have also been determined.

Research paper thumbnail of Complete Genomic Sequence of Bacteriophage Felix O1

Viruses, 2010

Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Se... more Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Sequencing revealed a single, linear, 86,155-base-pair genome with 39% average G+C content, 131 open reading frames, and 22 tRNAs. Closest protein homologs occur in Erwinia amylovora phage φEa21-4 and Escherichia coli phage wV8. Proteomic analysis indentified structural proteins: Gp23, Gp36 (major tail protein),

Research paper thumbnail of Bacteriophage P 22 Salmonella Sequence of the Genome of

The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate,... more The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate, serotype-converting bacteriophage P22 has been completed. The genome is 41,724 bp with an overall moles percent GC content of 47.1%. Numerous examples of potential integration host factor and C1-binding sites were identified in the sequence. In addition, five potential rho-independent terminators were discovered. Sixty-five genes were identified and annotated. While many of these had been described previously, we have added several new ones, including the genes involved in serotype conversion and late control. Two of the serotype conversion gene products show considerable sequence relatedness to GtrA and-B from Shigella phages SfII, SfV, and SfX. We have cloned the serotype-converting cassette (gtrABC) and demonstrated that it results in Salmonella serovar Typhimurium LT2 cells which express antigen O1. Many of the putative proteins show sequence relatedness to proteins from a great variety of other phages, supporting the hypothesis that this phage has evolved through the recombinational exchange of genetic information with other viruses.

Research paper thumbnail of Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows

Scientific reports, 2018

Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic E... more Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic Escherichia coli (MPEC) is related to an acute mastitis and its treatment is still based on the use of antibiotics. In the era of antimicrobial resistance (AMR), bacterial viruses (bacteriophages) present as an efficient treatment or prophylactic option. However, this makes it essential that its genetic structure, stability and interaction with the host immune system be thoroughly characterized. The present study analyzed a novel, broad host-range anti-mastitis agent, the T4virus vB_EcoM-UFV13 in genomic terms, and its activity against a MPEC strain in an experimental E. coli-induced mastitis mouse model. 4,975 Single Nucleotide Polymorphisms (SNPs) were assigned between vB_EcoM-UFV13 and E. coli phage T4 genomes with high impact on coding sequences (CDS) (37.60%) for virion proteins. Phylogenetic trees and genome analysis supported a recent infection mix between vB_EcoM-UFV13 and Shigell...

Research paper thumbnail of Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections

Frontiers in microbiology, 2016

Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections ... more Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages' ability to prevent catheter's colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic ...

Research paper thumbnail of Endemic bacteriophages: a cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals

Virology Journal, 2012

Background One of the most effective targets for control of zoonotic foodborne pathogens in the f... more Background One of the most effective targets for control of zoonotic foodborne pathogens in the farm to fork continuum is their elimination in food animals destined for market. Phage therapy for Escherichia coli O157:H7 in ruminants, the main animal reservoir of this pathogen, is a popular research topic. Since phages active against this pathogen may be endemic in host animals and their environment, they may emerge during trials of phage therapy or other interventions, rendering interpretation of trials problematic. Methods During separate phage therapy trials, sheep and cattle inoculated with 109 to 1010 CFU of E. coli O157:H7 soon began shedding phages dissimilar in plaque morphology to the administered therapeutic phages. None of the former was previously identified in the animals or in their environment. The dissimilar “rogue” phage was isolated and characterized by host range, ultrastructure, and genomic and proteomic analyses. Results The “rogue” phage (Phage vB_EcoS_Rogue1) i...

Research paper thumbnail of Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A

Virology Journal, 2011

Background Phage ϕIBB-PF7A is a T7-like bacteriophage capable of infecting several Pseudomonas fl... more Background Phage ϕIBB-PF7A is a T7-like bacteriophage capable of infecting several Pseudomonas fluorescens dairy isolates and is extremely efficient in lysing this bacterium even when growing in biofilms attached to surfaces. This work describes the complete genome sequence of this phage. Results The genome consists of a linear double-stranded DNA of 40,973 bp, with 985 bp long direct terminal repeats and a GC content of approximately 56%. There are 52 open reading frames which occupy 94.6% of the genome ranging from 137 to 3995 nucleotides. Twenty eight (46.7%) of the proteins encoded by this virus exhibit sequence similarity to coliphage T7 proteins while 34 (81.0%) are similar to proteins of Pseudomonas phage gh-1. Conclusions That this phage is closely related to Pseudomonas putida phage gh-1 and coliphage T7 places it in the "T7-like viruses" genus of the subfamily Autographivirinae within the family Podoviridae. Compared to the genome of gh-1, the sequence of ϕIBB-PF...

Research paper thumbnail of The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1

Virology Journal, 2009

Based upon whole genome and proteome analysis, Escherichia coli O157:H7-specific bacteriophage (p... more Based upon whole genome and proteome analysis, Escherichia coli O157:H7-specific bacteriophage (phage) wV8 belongs to the new myoviral genus, "the Felix O1-like viruses" along with Salmonella phage Felix O1 and Erwinia amylovora phage φEa21-4. The genome characteristics of phage wV8 (size 88.49 kb, mol%G+C 38.9, 138 ORFs, 23 tRNAs) are very similar to those of phage Felix O1 (86.16 kb, 39.0 mol%G+C, 131 ORFs and 22 tRNAs) and, indeed most of the proteins have their closest homologs within Felix O1. Approximately one-half of the Escherichia coli O157:H7 mutants resistant to phage wV8 still serotype as O157:H7 indicating that this phage may recognize, like coliphage T4, two different surface receptors: lipopolysaccharide and, perhaps, an outer membrane protein.

Research paper thumbnail of Characterization of a ViI-like Phage Specific to Escherichia coli O157:H7

Virology Journal, 2011

Phage vB_EcoM_CBA120 (CBA120), isolated against Escherichia coli O157:H7 from a cattle feedlot, i... more Phage vB_EcoM_CBA120 (CBA120), isolated against Escherichia coli O157:H7 from a cattle feedlot, is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and none targeting E. coli have been described in the literature. The genome of CBA120 has been fully sequenced and is highly similar to those of both ViI and the Shigella phage AG3. The core set of structural and replication-related proteins of CBA120 are homologous to those from T-even phages, but generally are more closely related to those from T4-like phages of Vibrio, Aeromonas and cyanobacteria than those of the Enterobacteriaceae. The baseplate and method of adhesion to the host are, however, very different from those of either T4 or the cyanophages. None of the outer baseplate proteins are conserved. Instead of T4's long and short tail fibers, CBA120, like ViI, encodes tail spikes related to those normally seen on podoviruses. The 158 kb genome, like that of T4, is circularly permuted and terminally redundant, but unlike T4 CBA120 does not substitute hmdCyt for cytosine in its DNA. However, in contrast to other coliphages, CBA120 and related coliphages we have isolated cannot incorporate 3 H-thymidine (3 H-dThd) into their DNA. Protein sequence comparisons cluster the putative "thymidylate synthase" of CBA120, ViI and AG3 much more closely with those of Delftia phage W-14, Bacillus subtilis phage SPO1, and Pseudomonas phage YuA, all known to produce and incorporate hydroxymethyluracil (hmdUra).

Research paper thumbnail of Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh

mBio, 2011

Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera ep... more Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the I nternational Centre for Diarrhoeal Disease Research, Bangladesh c holera p hage 1 ) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence o...

Research paper thumbnail of Complete Genome Sequence of Cronobacter sakazakii Bacteriophage CR3

Journal of Virology, 2012

Due to the high risk of Cronobacter sakazakii infection in infants fed powdered milk formula and ... more Due to the high risk of Cronobacter sakazakii infection in infants fed powdered milk formula and the emergence of antibiotic-resistant strains, an alternative biocontrol agent using bacteriophage is needed to control this pathogen. To further the development of such an agent, the C. sakazakii -targeting bacteriophage CR3 was isolated and its genome was completely sequenced. Here, we announce the genomic analysis results of the largest C. sakazakii phage known to date and report the major findings from the genome annotation.

Research paper thumbnail of Sequence of the Genome of Salmonella Bacteriophage P22

Journal of Bacteriology, 2000

The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate,... more The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate, serotype-converting bacteriophage P22 has been completed. The genome is 41,724 bp with an overall moles percent GC content of 47.1%. Numerous examples of potential integration host factor and C1-binding sites were identified in the sequence. In addition, five potential rho-independent terminators were discovered. Sixty-five genes were identified and annotated. While many of these had been described previously, we have added several new ones, including the genes involved in serotype conversion and late control. Two of the serotype conversion gene products show considerable sequence relatedness to GtrA and -B from Shigella phages SfII, SfV, and SfX. We have cloned the serotype-converting cassette ( gtrABC ) and demonstrated that it results in Salmonella serovar Typhimurium LT2 cells which express antigen O1. Many of the putative proteins show sequence relatedness to proteins from a great ...

Research paper thumbnail of Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021

Archives of Virology, 2021

In this article, we – the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of... more In this article, we – the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) – summarise the results of our activities for the period March 2020 – March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).

Research paper thumbnail of From Orphan Phage to a Proposed New Family–The Diversity of N4-Like Viruses

Antibiotics, 2020

Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long t... more Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long time. It encodes an extremely large virion-associated RNA polymerase unique for bacterial viruses that became characteristic for this group. In recent years, due to new and relatively inexpensive sequencing techniques the number of publicly available phage genome sequences expanded rapidly. This revealed new members of the N4-like phage group, from 33 members in 2015 to 115 N4-like viruses in 2020. Using new technologies and methods for classification, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) has moved the classification and taxonomy of bacterial viruses from mere morphological approaches to genomic and proteomic methods. The analysis of 115 N4-like genomes resulted in a huge reassessment of this group and the proposal of a new family “Schitoviridae”, including eight subfamilies and numerous new genera.

Research paper thumbnail of The Sequence of Two Bacteriophages with Hypermodified Bases Reveals Novel Phage-Host Interactions

Viruses, Apr 24, 2018

Bacteriophages SP-15 and ΦW-14 are members of the infecting and (formerly ) , respectively. W... more Bacteriophages SP-15 and ΦW-14 are members of the infecting and (formerly ) , respectively. What links them is that in both cases, approximately 50% of the thymine residues are replaced by hypermodified bases. The consequence of this is that the physico-chemical properties of the DNA are radically altered (melting temperature (Tm), buoyant density and susceptibility to restriction endonucleases). Using 454 pyrosequencing technology, we sequenced the genomes of both viruses. Phage ΦW-14 possesses a 157-kb genome (56.3% GC) specifying 236 proteins, while SP-15 is larger at 222 kb (38.6 mol % G + C) and encodes 318 proteins. In both cases, the phages can be considered genomic singletons since they do not possess BLASTn homologs. While no obvious genes were identified as being responsible for the modified base in ΦW-14, SP-15 contains a cluster of genes obviously involved in carbohydrate metabolism.

Research paper thumbnail of Yersinia enterocolitica specific infection by bacteriophages TG1 and ϕR1-RT is dependent on temperature regulated expression of the phage host receptor OmpF

Applied and environmental microbiology, Sep 24, 2016

Bacteriophages present huge potential both as a resource for developing novel tools for bacterial... more Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This is also valid for bacteriophages specific for Yersinia enterocolitica. To increase our knowledge on Y. enterocolitica -specific phages we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp respectively. Their genomes encode 262 putative coding sequences and 4 tRNAs genes, and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed with TG1 and ϕR1-RT as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica, and display lytic activity against the epidemiologi...

Research paper thumbnail of Comparative analysis of multiple inducible phages from Mannheimia haemolytica

BMC Microbiology, 2015

Background: Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory... more Background: Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory tract of cattle that can play a role in bovine respiratory disease. Prophages are common in the M. haemolytica genome and contribute significantly to host diversity. The objective of this research was to undertake comparative genomic analysis of phages induced from strains of M. haemolytica serotype A1 (535A and 2256A), A2 (587A and 1127A) and A6 (1152A and 3927A).

Research paper thumbnail of A Suggested New Bacteriophage Genus, "Kp34likevirus", within the Autographivirinae Subfamily of Podoviridae

Viruses, Jan 7, 2015

Klebsiella pneumoniae phages vB_KpnP_SU503 (SU503) and vB_KpnP_SU552A (SU552A) are virulent virus... more Klebsiella pneumoniae phages vB_KpnP_SU503 (SU503) and vB_KpnP_SU552A (SU552A) are virulent viruses belonging to the Autographivirinae subfamily of Podoviridae that infect and kill multi-resistant K. pneumoniae isolates. Phages SU503 and SU552A show high pairwise nucleotide identity to Klebsiella phages KP34 (NC_013649), F19 (NC_023567) and NTUH-K2044-K1-1 (NC_025418). Bioinformatic analysis of these phage genomes show high conservation of gene arrangement and gene content, conserved catalytically active residues of their RNA polymerase, a common and specific lysis cassette, and form a joint cluster in phylogenetic analysis of their conserved genes. Also, we have performed biological characterization of the burst size, latent period, host specificity (together with KP34 and NTUH-K2044-K1-1), morphology, and structural genes as well as sensitivity testing to various conditions. Based on the analyses of these phages, the creation of a new phage genus is suggested within the Autographi...

Research paper thumbnail of Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms

Viruses, 2012

Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial i... more Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This

Research paper thumbnail of A proposed new bacteriophage subfamily: “Jerseyvirinae”

Archives of Virology, 2015

Disclaimer UWE has obtained warranties from all depositors as to their title in the material depo... more Disclaimer UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. UWE makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited. UWE makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights. UWE accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

Research paper thumbnail of The genome of ε15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage

Virology, 2007

The genome sequence of the Salmonella enterica serovar Anatum-specific, serotype-converting bacte... more The genome sequence of the Salmonella enterica serovar Anatum-specific, serotype-converting bacteriophage ε15 has been completed. The nonredundant genome contains 39,671 bp and 51 putative genes. It most closely resembles the genome of φV10, an Escherichia coli O157:H7specific temperate phage, with which it shares 36 related genes. More distant relatives include the Burkholderia cepacia-specific phage, BcepC6B (8 similar genes), the Bordetella bronchiseptica-specific phage, BPP-1 (8 similar genes) and the Photobacterium profundum prophage, P Pφpr1 (6 similar genes). ε15 gene identifications based on homologies with known gene families include the terminase small and large subunits, integrase, endolysin, two holins, two DNA methylase enzymes (one adenine-specific and one cytosine-specific) and a RecT-like enzyme. Genes identified experimentally include those coding for the serotype conversion proteins, the tail fiber, the major capsid protein and the major repressor. ε15's attP site and the Salmonella attB site with which it interacts during lysogenization have also been determined.

Research paper thumbnail of Complete Genomic Sequence of Bacteriophage Felix O1

Viruses, 2010

Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Se... more Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Sequencing revealed a single, linear, 86,155-base-pair genome with 39% average G+C content, 131 open reading frames, and 22 tRNAs. Closest protein homologs occur in Erwinia amylovora phage φEa21-4 and Escherichia coli phage wV8. Proteomic analysis indentified structural proteins: Gp23, Gp36 (major tail protein),