Aneesh Alex - Academia.edu (original) (raw)
Papers by Aneesh Alex
Journal of Biophotonics, 2009
We report noninvasive imaging of the brain of adult Zebrafish (Danio rerio) using real time optic... more We report noninvasive imaging of the brain of adult Zebrafish (Danio rerio) using real time optical coherence tomography (OCT) capable of acquiring cross sectional 2D OCT images @ 8 frames/sec. Anatomic features such as telencephalon, tectum opticum, eminentia Granularis and cerebellum were clearly resolved in the OCT images. A 3D model of Zebrafish brain was reconstructed, for the first time to our knowledge, using these 2D OCT images. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
A novel combined photoacoustic tomography (PAT), optical resolution photoacoustic microscopy (ORP... more A novel combined photoacoustic tomography (PAT), optical resolution photoacoustic microscopy (ORPAM) and optical coherence tomography (OCT) instrument has been developed for imaging biological tissues. The system is based on the use of a Fabry-Perot (FP) polymer film ultrasound sensor. This is designed to be transparent to wavelengths between 590nm and 1200nm so that photoacoustic excitation laser pulses in this spectral range can be transmitted through the sensor into the underlying tissue to allow backward mode operation. The dual PAT-ORPAM capability of the system was demonstrated by imaging a tissue phantom composed of 7μm diameter carbon fibres immersed in an optically scattering liquid. The lateral and vertical spatial resolutions in ORPAM mode are approximately 7μm and 10μm respectively for sub-mm depths. In PAT mode, the lateral spatial resolution is less than 50μm for depths up to 5mm and the vertical resolution is approximately 10μm. The transparent nature of the FP polymer film ultrasound sensor offers a convenient platform for combining other optical imaging modalities with PAT and ORPAM. To illustrate this, a frequency-domain OCT system operating at 1060nm was integrated into the system and combined PAT/OCT images of the skin of a mouse were obtained in vivo.
Pharmaceutical Research, 2011
Purpose To gather sub-surface in situ images of microneedle-treated human skin, in vivo, using op... more Purpose To gather sub-surface in situ images of microneedle-treated human skin, in vivo, using optical coherence tomography (OCT). This is the first study to utilise OCT to investigate the architectural changes that are induced in skin following microneedle application. Methods Steel, silicon and polymer microneedle devices, with different microneedle arrangements and morphologies, were applied to two anatomical sites in human volunteers following appropriate ethical approval. A state-of-the-art ultrahigh resolution OCT imaging system operating at 800 nm wavelength and Results Transverse images of a microneedle device, in situ, were captured by the OCT system and suggest that the stratified skin tissue is compressed during microneedle application. Following removal of the device, the created microchannels collapse within the in vivo environment and, therefore, for all studied devices, microconduit dimensions are markedly smaller than the microneedle dimensions. Conclusions Microchannels created in the upper skin layers by microneedles are less invasive than previous histology predicts. OCT has the potential to play a highly influential role in the future development of microneedle devices and other transdermal delivery systems.
Journal of Biomedical Optics, 2010
The capability of optical coherence tomography ͑OCT͒ to perform "optical biopsy" of tissues withi... more The capability of optical coherence tomography ͑OCT͒ to perform "optical biopsy" of tissues within a depth range of 1 to 2 mm with micron-scale resolution in real time makes it a promising biomedical imaging modality for dermatologic applications. Three highspeed, spectrometer-based frequency-domain OCT systems operating at 800 nm ͑20,000 A-scans/s͒, 1060 nm, and 1300 nm ͑both 47,000 A-scans/s͒ at comparable signal-to-noise ratio ͑SNR͒, SNR roll-off with scanning depth, and transverse resolution ͑ Ͻ 15 m͒ were used to acquire 3-D tomograms of glabrous and hairy human skin in vivo. Images obtained using these three systems were compared in terms of penetration depth, resolution, and contrast. Normal as well as abnormal sites like moles and scar tissue were examined. In this preliminary study, skin pigmentation had little effect on penetration accomplished at three different wavelengths. The epidermis and dermal-epidermal junction could be properly delineated using OCT at 800 nm, and this wavelength offered better contrast over the other two wavelength regions. OCT at 1300 nm permits imaging of deeper dermal layers, critical for detecting deeper tumor boundaries and other deeper skin pathologies. The performance at 1060 nm compromises between the other wavelengths in terms of penetration depth and image contrast.
A novel non-invasive in vivo multimodal optical coherence tomography (OCT)/photoacoustic tomograp... more A novel non-invasive in vivo multimodal optical coherence tomography (OCT)/photoacoustic tomography (PAT) imaging system capable of obtaining structural and functional information simultaneously has been demonstrated in skin. A 1060 nm OCT system acquiring 47k depth-scans/s with ~ 7 μm axial and ~ 20 μm transverse resolutions has been incorporated into a backward-mode PA system based on a planar, optically-transparent Fabry-Perot interferometer (FPI) sensor. In this study, the excitation wavelength was set to 670 nm and a focused laser beam at 1550 nm was used as the sensor interrogation beam. OCT and PAT images were obtained sequentially and the coregistered images were combined to form the final 3D image. OCT/PAT images obtained in vivo from the skin of a hairless mouse and human palmar skin demonstrated the ability of this multimodal imaging system to provide complementary structural and functional information from deeper depths with increased contrast.
Journal of Biophotonics, 2009
We report noninvasive imaging of the brain of adult Zebrafish (Danio rerio) using real time optic... more We report noninvasive imaging of the brain of adult Zebrafish (Danio rerio) using real time optical coherence tomography (OCT) capable of acquiring cross sectional 2D OCT images @ 8 frames/sec. Anatomic features such as telencephalon, tectum opticum, eminentia Granularis and cerebellum were clearly resolved in the OCT images. A 3D model of Zebrafish brain was reconstructed, for the first time to our knowledge, using these 2D OCT images. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
A novel combined photoacoustic tomography (PAT), optical resolution photoacoustic microscopy (ORP... more A novel combined photoacoustic tomography (PAT), optical resolution photoacoustic microscopy (ORPAM) and optical coherence tomography (OCT) instrument has been developed for imaging biological tissues. The system is based on the use of a Fabry-Perot (FP) polymer film ultrasound sensor. This is designed to be transparent to wavelengths between 590nm and 1200nm so that photoacoustic excitation laser pulses in this spectral range can be transmitted through the sensor into the underlying tissue to allow backward mode operation. The dual PAT-ORPAM capability of the system was demonstrated by imaging a tissue phantom composed of 7μm diameter carbon fibres immersed in an optically scattering liquid. The lateral and vertical spatial resolutions in ORPAM mode are approximately 7μm and 10μm respectively for sub-mm depths. In PAT mode, the lateral spatial resolution is less than 50μm for depths up to 5mm and the vertical resolution is approximately 10μm. The transparent nature of the FP polymer film ultrasound sensor offers a convenient platform for combining other optical imaging modalities with PAT and ORPAM. To illustrate this, a frequency-domain OCT system operating at 1060nm was integrated into the system and combined PAT/OCT images of the skin of a mouse were obtained in vivo.
Pharmaceutical Research, 2011
Purpose To gather sub-surface in situ images of microneedle-treated human skin, in vivo, using op... more Purpose To gather sub-surface in situ images of microneedle-treated human skin, in vivo, using optical coherence tomography (OCT). This is the first study to utilise OCT to investigate the architectural changes that are induced in skin following microneedle application. Methods Steel, silicon and polymer microneedle devices, with different microneedle arrangements and morphologies, were applied to two anatomical sites in human volunteers following appropriate ethical approval. A state-of-the-art ultrahigh resolution OCT imaging system operating at 800 nm wavelength and Results Transverse images of a microneedle device, in situ, were captured by the OCT system and suggest that the stratified skin tissue is compressed during microneedle application. Following removal of the device, the created microchannels collapse within the in vivo environment and, therefore, for all studied devices, microconduit dimensions are markedly smaller than the microneedle dimensions. Conclusions Microchannels created in the upper skin layers by microneedles are less invasive than previous histology predicts. OCT has the potential to play a highly influential role in the future development of microneedle devices and other transdermal delivery systems.
Journal of Biomedical Optics, 2010
The capability of optical coherence tomography ͑OCT͒ to perform "optical biopsy" of tissues withi... more The capability of optical coherence tomography ͑OCT͒ to perform "optical biopsy" of tissues within a depth range of 1 to 2 mm with micron-scale resolution in real time makes it a promising biomedical imaging modality for dermatologic applications. Three highspeed, spectrometer-based frequency-domain OCT systems operating at 800 nm ͑20,000 A-scans/s͒, 1060 nm, and 1300 nm ͑both 47,000 A-scans/s͒ at comparable signal-to-noise ratio ͑SNR͒, SNR roll-off with scanning depth, and transverse resolution ͑ Ͻ 15 m͒ were used to acquire 3-D tomograms of glabrous and hairy human skin in vivo. Images obtained using these three systems were compared in terms of penetration depth, resolution, and contrast. Normal as well as abnormal sites like moles and scar tissue were examined. In this preliminary study, skin pigmentation had little effect on penetration accomplished at three different wavelengths. The epidermis and dermal-epidermal junction could be properly delineated using OCT at 800 nm, and this wavelength offered better contrast over the other two wavelength regions. OCT at 1300 nm permits imaging of deeper dermal layers, critical for detecting deeper tumor boundaries and other deeper skin pathologies. The performance at 1060 nm compromises between the other wavelengths in terms of penetration depth and image contrast.
A novel non-invasive in vivo multimodal optical coherence tomography (OCT)/photoacoustic tomograp... more A novel non-invasive in vivo multimodal optical coherence tomography (OCT)/photoacoustic tomography (PAT) imaging system capable of obtaining structural and functional information simultaneously has been demonstrated in skin. A 1060 nm OCT system acquiring 47k depth-scans/s with ~ 7 μm axial and ~ 20 μm transverse resolutions has been incorporated into a backward-mode PA system based on a planar, optically-transparent Fabry-Perot interferometer (FPI) sensor. In this study, the excitation wavelength was set to 670 nm and a focused laser beam at 1550 nm was used as the sensor interrogation beam. OCT and PAT images were obtained sequentially and the coregistered images were combined to form the final 3D image. OCT/PAT images obtained in vivo from the skin of a hairless mouse and human palmar skin demonstrated the ability of this multimodal imaging system to provide complementary structural and functional information from deeper depths with increased contrast.