Ann Hoffman - Academia.edu (original) (raw)

Papers by Ann Hoffman

Research paper thumbnail of Chronic stress enhanced fear memories are associated with increased amygdala zif268 mRNA expression and are resistant to reconsolidation

Neurobiology of Learning and Memory, 2015

The chronically stressed brain may present a vulnerability to develop maladaptive fear-related be... more The chronically stressed brain may present a vulnerability to develop maladaptive fear-related behaviors in response to a traumatic event. In rodents, chronic stress leads to amygdala hyperresponsivity and dendritic hypertrophy and produces a post traumatic stress disorder (PTSD)-like phenotype that includes exaggerated fear learning following Pavlovian fear conditioning and resistance to extinction. It is unknown whether chronic stress-induced enhanced fear memories are vulnerable to disruption via reconsolidation blockade, as a novel therapeutic approach for attenuating exaggerated fear memories. We used a chronic stress procedure in a rat model (wire mesh restraint for 6 h/d/21 d) to create a vulnerable brain that leads to a PTSD-like phenotype. We then examined freezing behavior during acquisition, reactivation and after post-reactivation rapamycin administration (i.p., 40 mg/kg) in a Pavlovian fear conditioning paradigm to determine its effects on reconsolidation as well as the subsequent functional activation of limbic structures using zif268 mRNA. Chronic stress increased amygdala zif268 mRNA during fear memory retrieval at reactivation. Moreover, these enhanced fear memories were unaffected by post reactivation rapamycin to disrupt long-term fear memory. Also, post-reactivation long term memory processing was also associated with increased amygdala (LA and BA), and decreased hippocampal CA1 zif268 mRNA expression. These results suggest potential challenges for reconsolidation blockade as an effective approach in treating exaggerated fear memories, as in PTSD. Our findings also support chronic stress manipulations combined with fear conditioning as a useful preclinical approach to study a PTSD-like phenotype.

Research paper thumbnail of Chronic administration of antipsychotics impede behavioral recovery after experimental traumatic brain injury

Neuroscience Letters, 2008

Antipsychotics are often administered to traumatic brain injured (TBI) patients as a means of con... more Antipsychotics are often administered to traumatic brain injured (TBI) patients as a means of controlling agitation, albeit the rehabilitative consequences of this intervention are not well known. Hence, the goal of this study was to evaluate the effects of risperidone (RISP) and haloperidol (HAL) on behavioral outcome after experimental TBI. Anesthetized rats received either a cortical impact or sham injury and then were randomly assigned to five TBI (RISP 0.045 mg/kg, RISP 0.45 mg/kg, RISP 4.5 mg/kg, HAL 0.5 mg/kg, VEHicle 1 mL/kg) and three Sham (RISP 4.5 mg/kg, HAL 0.5 mg/kg, VEH 1 mL/kg) groups. Treatments began 24 hrs after surgery and were provided once daily for 19 days. Behavior was assessed with established motor (beambalance/walk) and cognitive (spatial learning/memory in a water maze) tasks on post-operative days 1-5 and 14-19, respectively. RISP and HAL delayed motor recovery, impaired the acquisition of spatial learning, and slowed swim speed relative to VEH in both TBI and sham groups. These data indicate that chronic administration of RISP and HAL impede behavioral recovery after TBI and impair performance in uninjured controls.

Research paper thumbnail of Environmental enrichment-mediated functional improvement after experimental traumatic brain injury is contingent on task-specific neurobehavioral experience

Neuroscience Letters, 2008

Environmental enrichment (EE) is superior to standard (STD) housing in promoting functional recov... more Environmental enrichment (EE) is superior to standard (STD) housing in promoting functional recovery after traumatic brain injury (TBI). However, whether the EE-mediated benefits after TBI are dependent on exposure to enrichment during neurobehavioral training has not been elucidated. To address this issue, isoflurane-anesthetized adult male rats received either a cortical impact or sham injury and were then randomly assigned to early EE, delayed EE, continuous EE or no EE (i.e., STD conditions). Continuous EE or no EE was initiated immediately after surgery and continued for the duration of the study. Early EE began directly after surgery, continued for 1 week, and was then followed by STD living (2 rats per cage) for the remainder of the study, while delayed EE commenced 1 week after early STD housing. Functional outcome was assessed with established motor and cognitive tests on post-injury days 1-5 and 14-18, respectively. CA(1)/CA(3) neurons were quantified at 3 weeks. CA(3) cell loss was significantly attenuated in the TBI+continuous EE group versus the TBI+no EE group. Beam-walking was facilitated in the TBI groups that received either early or continuous EE versus those receiving delayed or no EE. Cognitive training was enhanced in the TBI groups that received continuous or delayed EE versus the early EE or no EE groups. These data suggest that EE-mediated functional improvement after TBI is contingent on task-specific neurobehavioral experience.

Research paper thumbnail of The neurobehavioral benefit conferred by a single systemic administration of 8-OH-DPAT after brain trauma is confined to a narrow therapeutic window

Neuroscience Letters, 2007

The 5-HT 1A receptor agonist 8-OH-DPAT (0.5 mg/kg) enhances behavioral recovery when administered... more The 5-HT 1A receptor agonist 8-OH-DPAT (0.5 mg/kg) enhances behavioral recovery when administered 15 min after experimental traumatic brain injury (TBI). To determine if benefits are still attainable at clinically relevant times, treatment was delayed 1 and 2 hr post-TBI and motor/ cognitive performance was compared to early (i.e., 15 min) administration. No differences were observed among the vehicle and 8-OH-DPAT groups treated at 1 and 2 hr, but all three were significantly impaired vs. early 8-OH-DPAT. The data suggest that an early and narrow critical period exists for the behavioral recovery afforded by a single 8-OH-DPAT treatment paradigm. The critical window corresponds to the well documented TBI-induced glutamate increase, suggesting that 8-OH-DPAT may be conferring neuroprotection by attenuating this acute deleterious surge.

Research paper thumbnail of Administration of haloperidol and risperidone after neurobehavioral testing hinders the recovery of traumatic brain injury-induced deficits

Life Sciences, 2008

Agitation and aggression are common behavioral sequelae of traumatic brain injury (TBI). The mana... more Agitation and aggression are common behavioral sequelae of traumatic brain injury (TBI). The management of these symptoms is critical for effective patient care and therefore antipsychotics are routinely administered even though the benefits vs. risks of this approach on functional outcome after TBI are unclear. A recent study from our group revealed that both haloperidol and risperidone impaired recovery when administered prior to testing. However, the results may have been confounded by drug-induced sedation. Hence, the current study reevaluated the behavioral effects of haloperidol and risperidone when provided after daily testing, thus circumventing the potential sedative effect. Fifty-four isoflurane-anesthetized male rats received a cortical impact or sham injury and then were randomly assigned to three TBI and three sham groups that received haloperidol (0.5 mg/kg), risperidone (0.45 mg/kg), or vehicle (1.0 mL/kg). Treatments began 24 h after surgery and were administered (i.p.) every day thereafter for 19 days. Motor and cognitive function was assessed on post-operative days 1-5 and 14-19, respectively. Hippocampal CA(1)/CA(3) neurons and cortical lesion volume were quantified at 3 weeks. Only risperidone delayed motor recovery, but both antipsychotics impaired spatial learning relative to vehicle (p<0.05). Neither swim speed nor histological outcomes were affected. No differences were observed between the haloperidol and risperidone groups in any task. These data support our previous finding that chronic haloperidol and risperidone hinder the recovery of TBI-induced deficits, and augment those data by demonstrating that the effects are not mediated by drug-induced sedation.

Research paper thumbnail of Empirical Comparison of Typical and Atypical Environmental Enrichment Paradigms on Functional and Histological Outcome after Experimental Traumatic Brain Injury

Journal of Neurotrauma, 2010

Several studies have shown that housing rats in an enriched environment (EE) after traumatic brai... more Several studies have shown that housing rats in an enriched environment (EE) after traumatic brain injury (TBI) improves functional and histological outcome. The typical EE includes exploratory, sensory, and social components in cages that are often vastly larger than standard (STD) housing. It is uncertain, however, whether a single or specific component is sufficient to confer these benefits after TBI, or if all, perhaps in an additive or synergistic manner, are necessary. To clarify this ambiguity, anesthetized adult male rats were subjected to either a controlled cortical impact or sham injury, and then were randomly assigned to five different housing paradigms: (1) EE (typical), (2) EE (Àsocial), (3) EE (Àstimuli), (4) STD (typical), and (5) STD (þstimuli). Motor and cognitive function were assessed using conventional motor (beam-balance/traversal) and cognitive (spatial learning in a Morris water maze) tests on postoperative days 1-5 and 14-19, respectively, and cortical lesion volume and CA1/CA3 cell loss were quantified at 3 weeks. No significant differences were observed among the sham groups in any comparison and thus their data were pooled (i.e., SHAM). In the TBI groups, typical EE improved beam-balance versus both STD (þstimuli) and EE (Àsocial), it facilitated the acquisition of spatial learning and memory retention versus all other housing conditions ( p < 0.003), and it reduced lesion volume and CA3 cell loss versus STD (typical) housing. While rats in the three atypical EE conditions exhibited slightly better cognitive performance and histological protection versus the typical STD group, the overall effects were not significant. These data suggest that exposing TBI rats to any of the three components individually may be more advantageous than no enrichment, but only exposure to typical EE yields optimal benefits.

Research paper thumbnail of A delayed and chronic treatment regimen with the 5-HT1A receptor agonist 8-OH-DPAT after cortical impact injury facilitates motor recovery and acquisition of spatial learning

Behavioural Brain Research, 2008

An early (i.e., 15min) single systemic administration of the 5-HT(1A) receptor agonist 8-OH-DPAT ... more An early (i.e., 15min) single systemic administration of the 5-HT(1A) receptor agonist 8-OH-DPAT enhances behavioral recovery after experimental traumatic brain injury (TBI). However, acute administration of pharmacotherapies after TBI may be clinically challenging and thus the present study sought to investigate the potential efficacy of a delayed and chronic 8-OH-DPAT treatment regimen. Forty-eight isoflurane-anesthetized adult male rats received either a controlled cortical impact or sham injury and beginning 24h later were administered 8-OH-DPAT (0.1 or 0.5mg/kg) or saline vehicle (1.0mL/kg) intraperitoneally once daily until all behavioral assessments were completed. Neurobehavior was assessed by motor and cognitive tests on post-operative days 1-5 and 14-19, respectively. The lower dose of 8-OH-DPAT (0.1mg/kg) enhanced motor performance, acquisition of spatial learning, and memory retention vs. both the higher dose (0.5mg/kg) and vehicle treatment (p&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05). These data replicate previous findings from our laboratory showing that 8-OH-DPAT improves neurobehavior after TBI, and extend those results by demonstrating that the benefits can be achieved even when treatment is withheld for 24h. A delayed and chronic treatment regimen may be more clinically feasible.

Research paper thumbnail of Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory

Behavioral Neuroscience, 2012

Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) t... more Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, the fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague-Dawley rats were first trained on the RAWM and subsequently trained on FMI. After acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when sucrose reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing imprecision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher's r-to-z transformation revealed no significant differences between control and stress groups with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been directly compared within the same animals after chronic stress, using FMI, an appetitive task, and RAWM, a nonappetitive task.

Research paper thumbnail of Experience-dependent effects of context and restraint stress on corticolimbic c-Fos expression

Stress, 2013

Stressors are typically multidimensional, comprised of multiple physical and sensory components t... more Stressors are typically multidimensional, comprised of multiple physical and sensory components that rarely occur as single isolated events. This study used a 2-day stress exposure paradigm to assess functional activation patterns (by Fos expression) in key corticolimbic structures following repeated context, repeated restraint, context followed by restraint or restraint followed by context. On day 1, rats were transported to a novel context and either restrained for 6 h or left undisturbed. On day 2, these two groups were either restrained or not in the same context, then processed for Fos immunohistochemistry. Regardless of prior stress experience, rats exposed to context only on day 2 expressed more Fos-like immunoreactive (IR) labeling in CA1 and CA3 of dorsal hippocampus, basolateral amygdala and central amygdala than those that were not. This pattern was reversed in the dentate gyrus infrapyramidal blade. In contrast, in the infralimbic region of the medial prefrontal cortex (mPFC), the experience of a single restraint on either day 1 or day 2 rats elevated Fos-like IR relative to rats that had been exposed to context alone. These data show that exposure to context produces robust Fos induction in the hippocampus and amygdala, regardless of prior experience with restraint and compared to the immediate experience of restraint, with prior experience modulating Fos expression within the mPFC.

Research paper thumbnail of Chronic stress enhanced fear memories are associated with increased amygdala zif268 mRNA expression and are resistant to reconsolidation

Neurobiology of Learning and Memory, 2015

The chronically stressed brain may present a vulnerability to develop maladaptive fear-related be... more The chronically stressed brain may present a vulnerability to develop maladaptive fear-related behaviors in response to a traumatic event. In rodents, chronic stress leads to amygdala hyperresponsivity and dendritic hypertrophy and produces a post traumatic stress disorder (PTSD)-like phenotype that includes exaggerated fear learning following Pavlovian fear conditioning and resistance to extinction. It is unknown whether chronic stress-induced enhanced fear memories are vulnerable to disruption via reconsolidation blockade, as a novel therapeutic approach for attenuating exaggerated fear memories. We used a chronic stress procedure in a rat model (wire mesh restraint for 6 h/d/21 d) to create a vulnerable brain that leads to a PTSD-like phenotype. We then examined freezing behavior during acquisition, reactivation and after post-reactivation rapamycin administration (i.p., 40 mg/kg) in a Pavlovian fear conditioning paradigm to determine its effects on reconsolidation as well as the subsequent functional activation of limbic structures using zif268 mRNA. Chronic stress increased amygdala zif268 mRNA during fear memory retrieval at reactivation. Moreover, these enhanced fear memories were unaffected by post reactivation rapamycin to disrupt long-term fear memory. Also, post-reactivation long term memory processing was also associated with increased amygdala (LA and BA), and decreased hippocampal CA1 zif268 mRNA expression. These results suggest potential challenges for reconsolidation blockade as an effective approach in treating exaggerated fear memories, as in PTSD. Our findings also support chronic stress manipulations combined with fear conditioning as a useful preclinical approach to study a PTSD-like phenotype.

Research paper thumbnail of Chronic administration of antipsychotics impede behavioral recovery after experimental traumatic brain injury

Neuroscience Letters, 2008

Antipsychotics are often administered to traumatic brain injured (TBI) patients as a means of con... more Antipsychotics are often administered to traumatic brain injured (TBI) patients as a means of controlling agitation, albeit the rehabilitative consequences of this intervention are not well known. Hence, the goal of this study was to evaluate the effects of risperidone (RISP) and haloperidol (HAL) on behavioral outcome after experimental TBI. Anesthetized rats received either a cortical impact or sham injury and then were randomly assigned to five TBI (RISP 0.045 mg/kg, RISP 0.45 mg/kg, RISP 4.5 mg/kg, HAL 0.5 mg/kg, VEHicle 1 mL/kg) and three Sham (RISP 4.5 mg/kg, HAL 0.5 mg/kg, VEH 1 mL/kg) groups. Treatments began 24 hrs after surgery and were provided once daily for 19 days. Behavior was assessed with established motor (beambalance/walk) and cognitive (spatial learning/memory in a water maze) tasks on post-operative days 1-5 and 14-19, respectively. RISP and HAL delayed motor recovery, impaired the acquisition of spatial learning, and slowed swim speed relative to VEH in both TBI and sham groups. These data indicate that chronic administration of RISP and HAL impede behavioral recovery after TBI and impair performance in uninjured controls.

Research paper thumbnail of Environmental enrichment-mediated functional improvement after experimental traumatic brain injury is contingent on task-specific neurobehavioral experience

Neuroscience Letters, 2008

Environmental enrichment (EE) is superior to standard (STD) housing in promoting functional recov... more Environmental enrichment (EE) is superior to standard (STD) housing in promoting functional recovery after traumatic brain injury (TBI). However, whether the EE-mediated benefits after TBI are dependent on exposure to enrichment during neurobehavioral training has not been elucidated. To address this issue, isoflurane-anesthetized adult male rats received either a cortical impact or sham injury and were then randomly assigned to early EE, delayed EE, continuous EE or no EE (i.e., STD conditions). Continuous EE or no EE was initiated immediately after surgery and continued for the duration of the study. Early EE began directly after surgery, continued for 1 week, and was then followed by STD living (2 rats per cage) for the remainder of the study, while delayed EE commenced 1 week after early STD housing. Functional outcome was assessed with established motor and cognitive tests on post-injury days 1-5 and 14-18, respectively. CA(1)/CA(3) neurons were quantified at 3 weeks. CA(3) cell loss was significantly attenuated in the TBI+continuous EE group versus the TBI+no EE group. Beam-walking was facilitated in the TBI groups that received either early or continuous EE versus those receiving delayed or no EE. Cognitive training was enhanced in the TBI groups that received continuous or delayed EE versus the early EE or no EE groups. These data suggest that EE-mediated functional improvement after TBI is contingent on task-specific neurobehavioral experience.

Research paper thumbnail of The neurobehavioral benefit conferred by a single systemic administration of 8-OH-DPAT after brain trauma is confined to a narrow therapeutic window

Neuroscience Letters, 2007

The 5-HT 1A receptor agonist 8-OH-DPAT (0.5 mg/kg) enhances behavioral recovery when administered... more The 5-HT 1A receptor agonist 8-OH-DPAT (0.5 mg/kg) enhances behavioral recovery when administered 15 min after experimental traumatic brain injury (TBI). To determine if benefits are still attainable at clinically relevant times, treatment was delayed 1 and 2 hr post-TBI and motor/ cognitive performance was compared to early (i.e., 15 min) administration. No differences were observed among the vehicle and 8-OH-DPAT groups treated at 1 and 2 hr, but all three were significantly impaired vs. early 8-OH-DPAT. The data suggest that an early and narrow critical period exists for the behavioral recovery afforded by a single 8-OH-DPAT treatment paradigm. The critical window corresponds to the well documented TBI-induced glutamate increase, suggesting that 8-OH-DPAT may be conferring neuroprotection by attenuating this acute deleterious surge.

Research paper thumbnail of Administration of haloperidol and risperidone after neurobehavioral testing hinders the recovery of traumatic brain injury-induced deficits

Life Sciences, 2008

Agitation and aggression are common behavioral sequelae of traumatic brain injury (TBI). The mana... more Agitation and aggression are common behavioral sequelae of traumatic brain injury (TBI). The management of these symptoms is critical for effective patient care and therefore antipsychotics are routinely administered even though the benefits vs. risks of this approach on functional outcome after TBI are unclear. A recent study from our group revealed that both haloperidol and risperidone impaired recovery when administered prior to testing. However, the results may have been confounded by drug-induced sedation. Hence, the current study reevaluated the behavioral effects of haloperidol and risperidone when provided after daily testing, thus circumventing the potential sedative effect. Fifty-four isoflurane-anesthetized male rats received a cortical impact or sham injury and then were randomly assigned to three TBI and three sham groups that received haloperidol (0.5 mg/kg), risperidone (0.45 mg/kg), or vehicle (1.0 mL/kg). Treatments began 24 h after surgery and were administered (i.p.) every day thereafter for 19 days. Motor and cognitive function was assessed on post-operative days 1-5 and 14-19, respectively. Hippocampal CA(1)/CA(3) neurons and cortical lesion volume were quantified at 3 weeks. Only risperidone delayed motor recovery, but both antipsychotics impaired spatial learning relative to vehicle (p&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05). Neither swim speed nor histological outcomes were affected. No differences were observed between the haloperidol and risperidone groups in any task. These data support our previous finding that chronic haloperidol and risperidone hinder the recovery of TBI-induced deficits, and augment those data by demonstrating that the effects are not mediated by drug-induced sedation.

Research paper thumbnail of Empirical Comparison of Typical and Atypical Environmental Enrichment Paradigms on Functional and Histological Outcome after Experimental Traumatic Brain Injury

Journal of Neurotrauma, 2010

Several studies have shown that housing rats in an enriched environment (EE) after traumatic brai... more Several studies have shown that housing rats in an enriched environment (EE) after traumatic brain injury (TBI) improves functional and histological outcome. The typical EE includes exploratory, sensory, and social components in cages that are often vastly larger than standard (STD) housing. It is uncertain, however, whether a single or specific component is sufficient to confer these benefits after TBI, or if all, perhaps in an additive or synergistic manner, are necessary. To clarify this ambiguity, anesthetized adult male rats were subjected to either a controlled cortical impact or sham injury, and then were randomly assigned to five different housing paradigms: (1) EE (typical), (2) EE (Àsocial), (3) EE (Àstimuli), (4) STD (typical), and (5) STD (þstimuli). Motor and cognitive function were assessed using conventional motor (beam-balance/traversal) and cognitive (spatial learning in a Morris water maze) tests on postoperative days 1-5 and 14-19, respectively, and cortical lesion volume and CA1/CA3 cell loss were quantified at 3 weeks. No significant differences were observed among the sham groups in any comparison and thus their data were pooled (i.e., SHAM). In the TBI groups, typical EE improved beam-balance versus both STD (þstimuli) and EE (Àsocial), it facilitated the acquisition of spatial learning and memory retention versus all other housing conditions ( p < 0.003), and it reduced lesion volume and CA3 cell loss versus STD (typical) housing. While rats in the three atypical EE conditions exhibited slightly better cognitive performance and histological protection versus the typical STD group, the overall effects were not significant. These data suggest that exposing TBI rats to any of the three components individually may be more advantageous than no enrichment, but only exposure to typical EE yields optimal benefits.

Research paper thumbnail of A delayed and chronic treatment regimen with the 5-HT1A receptor agonist 8-OH-DPAT after cortical impact injury facilitates motor recovery and acquisition of spatial learning

Behavioural Brain Research, 2008

An early (i.e., 15min) single systemic administration of the 5-HT(1A) receptor agonist 8-OH-DPAT ... more An early (i.e., 15min) single systemic administration of the 5-HT(1A) receptor agonist 8-OH-DPAT enhances behavioral recovery after experimental traumatic brain injury (TBI). However, acute administration of pharmacotherapies after TBI may be clinically challenging and thus the present study sought to investigate the potential efficacy of a delayed and chronic 8-OH-DPAT treatment regimen. Forty-eight isoflurane-anesthetized adult male rats received either a controlled cortical impact or sham injury and beginning 24h later were administered 8-OH-DPAT (0.1 or 0.5mg/kg) or saline vehicle (1.0mL/kg) intraperitoneally once daily until all behavioral assessments were completed. Neurobehavior was assessed by motor and cognitive tests on post-operative days 1-5 and 14-19, respectively. The lower dose of 8-OH-DPAT (0.1mg/kg) enhanced motor performance, acquisition of spatial learning, and memory retention vs. both the higher dose (0.5mg/kg) and vehicle treatment (p&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05). These data replicate previous findings from our laboratory showing that 8-OH-DPAT improves neurobehavior after TBI, and extend those results by demonstrating that the benefits can be achieved even when treatment is withheld for 24h. A delayed and chronic treatment regimen may be more clinically feasible.

Research paper thumbnail of Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory

Behavioral Neuroscience, 2012

Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) t... more Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, the fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague-Dawley rats were first trained on the RAWM and subsequently trained on FMI. After acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when sucrose reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing imprecision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher's r-to-z transformation revealed no significant differences between control and stress groups with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been directly compared within the same animals after chronic stress, using FMI, an appetitive task, and RAWM, a nonappetitive task.

Research paper thumbnail of Experience-dependent effects of context and restraint stress on corticolimbic c-Fos expression

Stress, 2013

Stressors are typically multidimensional, comprised of multiple physical and sensory components t... more Stressors are typically multidimensional, comprised of multiple physical and sensory components that rarely occur as single isolated events. This study used a 2-day stress exposure paradigm to assess functional activation patterns (by Fos expression) in key corticolimbic structures following repeated context, repeated restraint, context followed by restraint or restraint followed by context. On day 1, rats were transported to a novel context and either restrained for 6 h or left undisturbed. On day 2, these two groups were either restrained or not in the same context, then processed for Fos immunohistochemistry. Regardless of prior stress experience, rats exposed to context only on day 2 expressed more Fos-like immunoreactive (IR) labeling in CA1 and CA3 of dorsal hippocampus, basolateral amygdala and central amygdala than those that were not. This pattern was reversed in the dentate gyrus infrapyramidal blade. In contrast, in the infralimbic region of the medial prefrontal cortex (mPFC), the experience of a single restraint on either day 1 or day 2 rats elevated Fos-like IR relative to rats that had been exposed to context alone. These data show that exposure to context produces robust Fos induction in the hippocampus and amygdala, regardless of prior experience with restraint and compared to the immediate experience of restraint, with prior experience modulating Fos expression within the mPFC.