Anna Shen - Academia.edu (original) (raw)
Papers by Anna Shen
Nature, 1988
The prevalent forms of adult and childhood B-cell neoplasia are chronic lymphocytic (CLL) and acu... more The prevalent forms of adult and childhood B-cell neoplasia are chronic lymphocytic (CLL) and acute lymphocytic (ALL) leukaemia, and are typified by a nearly monoclonal accumulation of cells expressing a single heavy (H) and light (L) chain variable (V) region. V gene selection could be random, or quite biased if the disease or the developmental status of the transformed cell somehow influenced DNA rearrangement. We have cloned and sequenced three germ-line VH gene segments that constitute a new human VH family (subgroup V) linked within 160 kilobase pairs of the DH-JH complex. One VH(V) member is rearranged in about 30% of patients with CLL and ALL, but not in IgM-expressing B-cell lines from peripheral blood. In some tumours, we detect a truncated (VH(V) RNA devoid of constant regions that originates from unrearranged VH(V) genes. In other tumours and in resting splenocytes, we detect large amounts of normally sized VH(V)-associated mRNA, although stimulation by mitogen of splenic B cells results in loss of VH(V)-hybridizing RNA. These features suggest that biased rearrangement of subgroup V may be under developmental selection.
Proceedings of the National Academy of Sciences of the United States of America, Jan 30, 2014
The circadian clock plays a significant role in many aspects of female reproductive biology, incl... more The circadian clock plays a significant role in many aspects of female reproductive biology, including estrous cycling, ovulation, embryonic implantation, onset of puberty, and parturition. In an effort to link cell-specific circadian clocks to their specific roles in female reproduction, we used the promoter that controls expression of Steroidogenic Factor-1 (SF1) to drive Cre-recombinase-mediated deletion of the brain muscle arnt-like 1 (Bmal1) gene, known to encode an essential component of the circadian clock (SF1-Bmal1(-/-)). The resultant SF1-Bmal1(-/-) females display embryonic implantation failure, which is rescued by progesterone supplementation, or bilateral or unilateral transplantation of wild-type ovaries into SF1-Bmal1(-/-) dams. The observation that the central clock, and many other peripheral clocks, are fully functional in this model allows the assignment of the implantation phenotype to the clock in ovarian steroidogenic cells and distinguishes it from more general...
PLoS ONE, 2010
The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enla... more The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD) and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the ''mouse PPCD1'' phenotype and mapped the mouse locus for this phenotype, designated ''Ppcd1'', to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bp tm1a(KOMP)Wtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD. Citation: Shen AL, O'Leary KA, Dubielzig RR, Drinkwater N, Murphy CJ, et al. (2010) The PPCD1 Mouse: Characterization of a Mouse Model for Posterior Polymorphous Corneal Dystrophy and Identification of a Candidate Gene. PLoS ONE 5(8): e12213.
Journal of the American Chemical Society, 2001
1. J Am Chem Soc. 2001 May 16;123(19):4633-4. SEA-TROSY (solvent exposed amides with TROSY): a me... more 1. J Am Chem Soc. 2001 May 16;123(19):4633-4. SEA-TROSY (solvent exposed amides with TROSY): a method to resolve the problem of spectral overlap in very large proteins. Pellecchia M, Meininger D, Shen AL, Jack R, Kasper CB, Sem DS. ...
Journal of Biological Chemistry, 2011
The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain move... more The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp 147 and Arg 514 in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (>90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP ؉ revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ϳ20°compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP ؉ shows movement of the Gly 631 -Asn 635 loop. In the NADP ؉ -free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP ؉ shows movement of the Gly 631 -Asn 635 loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly 631 -Asn 635 loop movement controls NADPH binding and NADP ؉ release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners.
Journal of Biological Chemistry, 2002
The microsomal flavoprotein NADPH-cytochrome P450 oxidoreductase (CYPOR) is believed to function ... more The microsomal flavoprotein NADPH-cytochrome P450 oxidoreductase (CYPOR) is believed to function as the primary, if not sole, electron donor for the microsomal cytochrome P450 mixed-function oxidase system. Development of the mammalian embryo is dependent upon temporally and spatially regulated expression of signaling factors, many of which are synthesized and/or degraded via the cytochromes P450 and other pathways involving NADPH-cytochrome P450 oxidoreductase as the electron donor. Expression of CYPOR as early as the two-cell stage of embryonic development (The Institute for Genomic Research Mouse Gene Index, version 5.0, www.tigr.org/tdb/mgi) suggests that CYPOR is essential for normal cellular functions and/or early embryogenesis. Targeted deletion of the translation start site and membrane-binding domain of CYPOR abolished microsomal CYPOR expression and led to production of a truncated, 66-kDa protein localized to the cytoplasm. Although early embryogenesis was not affected, a variety of embryonic defects was observable by day 10.5 of gestation, leading to lethality by day 13.5. Furthermore, a deficiency of heterozygotes was observed in 2-weekold mice as well as late gestational age embryos, suggesting that loss of one CYPOR allele produced some embryonic lethality. CYPOR ؊/؊ embryos displayed a marked friability, consistent with defects in cell adhesion. Ninety percent of CYPOR ؊/؊ embryos isolated at days 10.5 or 11.5 of gestation could be classified as either Type I, characterized by grossly normal somite formation but having neural tube, cardiac, eye, and limb abnormalities, or Type II, characterized by a generalized retardation of development after approximately day 8.5 of gestation. No CYPOR ؊/؊ embryos were observed after day 13.5 of gestation. These studies demonstrate that loss of microsomal CYPOR does not block early embryonic development but is essential for progression past mid-gestation.
Biochemistry, 2003
The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure th... more The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure the rate of electron transfer to microsomal oxyferrous cytochrome (cyt) P450 2B4. In this reductase the FMN moiety can be reduced to the hydroquinone, FMNH(2), while the 5-deazaFAD moiety remains oxidized [Zhang, H., et al. (2003) Biochemistry 42, 6804-6813]. The rate of electron transfer from 5-deazaFAD cyt P450 reductase to oxyferrous cyt P450 was determined by rapidly mixing the ferrous cyt P450-2-electron-reduced 5-deazaFAD T491V reductase complex with oxygen in the presence of substrate. The 5-deazaFAD T491V reductase which can only donate a single electron reduces the oxyferrous cyt P450 and oxidizes to the air-stable semiquinone, with rate constants of 8.4 and 0.37 s(-1) at 15 degrees C. Surprisingly, oxyferrous cyt P450 turns over more slowly with a rate constant of 0.09 s(-1), which is the rate of catalysis under steady-state conditions at 15 degrees C (k(cat) = 0.08 s(-1)). In contrast, the rate constant for electron transfer from ferrous cyt b(5) to oxyferrous cyt P450 is 10 s(-1) with oxyferrous cyt P450 and cyt b(5) simultaneously undergoing spectral changes. Quantitative analyses by LC-MS/MS revealed that the product, norbenzphetamine, was formed with a coupling efficiency of 52% with cyt b(5) and 32% with 5-deazaFAD T491V reductase. Collectively, these results suggest that during catalysis a relatively stable reduced oxyferrous intermediate of cyt P450 is formed in the presence of cyt P450 reductase but not cyt b(5) and that the rate-limiting step in catalysis follows introduction of the second electron.
Biochemistry, 2003
NADPH-cytochrome P450 reductase is a flavoprotein which contains both an FAD and FMN cofactor. Si... more NADPH-cytochrome P450 reductase is a flavoprotein which contains both an FAD and FMN cofactor. Since the distribution of electrons is governed solely by the redox potentials of the cofactors, there are nine different ways the electrons can be distributed and hence nine possible unique forms of the protein. More than one species of reductase will exist at a given level of oxidation except when the protein is either totally reduced or oxidized. In an attempt to unambiguously characterize the redox properties of the physiologically relevant FMNH(2) form of the reductase, the T491V mutant of NADPH-cytochrome P450 reductase has been reconstituted with 5'-deazaFAD which binds to the FAD-binding site of the reductase with a K(d) of 94 nM. The 5'-deazaFAD cofactor does not undergo oxidation or reduction under our experimental conditions. The molar ratio of FMN to 5'-deazaFAD in the reconstituted reductase was 1.1. Residual FAD accounted for less than 5% of the total flavins. Addition of 2 electron equivalents to the 5'-deazaFAD T491V reductase from dithionite generated a stoichiometric amount of the FMN hydroquinone form of the protein. The 5'-deazaFAD moiety remained oxidized under these conditions due to its low redox potential (-650 mV). The 2-electron-reduced 5'-deazaFAD reductase was capable of transferring only a single electron from its FMN domain to its redox partners, ferric cytochrome c and cytochrome b(5). Reduction of the cytochromes and oxidation of the reductase occurred simultaneously. The FMNH(2) in the 5'-deazaFAD reductase autoxidizes with a first-order rate constant of 0.007 s(-)(1). Availability of a stable NADPH-cytochrome P450 reductase capable of donating only a single electron to its redox partners provides a unique tool for investigating the electron-transfer properties of an intact reductase molecule.
Biochemistry, 1996
Site-directed mutagenesis of Ser457 of NADPH-cytochrome P450 oxidoreductase demonstrates that thi... more Site-directed mutagenesis of Ser457 of NADPH-cytochrome P450 oxidoreductase demonstrates that this residue plays a major role in both hydride transfer from NADPH to FAD and modulation of FAD redox potential. Substitution of Ser457 with alanine or cysteine decreases the rates of reduction of the substrates cytochrome c and potassium ferricyanide approximately 100-fold, while substitution with threonine produces a 20-fold decrease in activity. No changes are observed in k(m)NADPH, KiNADP+, or flavin content, indicating that these substitutions have no effect on cofactor binding but affect catalysis only. k(m)cyt c values are decreased in parallel with the observed decreases in the rates of the reductive half-reaction. Stopped-flow studies with the S457A mutant show a 100-fold decrease in the rate of flavin reduction. The primary deuterium isotope effect on Kcat for cytochrome c reduction increases from 2.7 for the wild-type enzyme to 9.0 for the S457A mutant, consistent with a change in the rate-determining step from NADP+ release in the wild-type enzyme to hydride transfer in the S457A mutant. The primary deuterium isotope effect on K1 for flavin reduction at high ionic strength (I = 535 mM) increases from 12.2 for the wild-type enzyme to > 20 for the S457A mutant, consistent again with an increase in the relative rate limitation of hydride transfer. Furthermore, anaerobic titration of S457A indicates that the redox potential of the FAD semiquinone has been decreased. Data presented in this study support the hypothesis that Ser457 is involved in hydrogen bonding interactions which stabilize both the transition state for hydride transfer and the reduced FAD.
Biochemistry, 1992
31P N M R spectroscopy has been utilized in conjunction with site-directed mutagenesis and phosph... more 31P N M R spectroscopy has been utilized in conjunction with site-directed mutagenesis and phospholipid analysis to determine structural aspects of the prosthetic flavins, FAD and FMN, of NADPH-cytochrome P450 reductase. Comparisons are made among detergent-solubilized and protease (steapsin)-solubilized preparations of porcine liver reductases, showing unequivocally that the 31P N M R signals at -0.0 ppm in the detergent-solubilized, hydrophobic form are attributable to phospholipids. By extraction and TLC analysis, the phospholipid contents of detergent-solubilized rat liver reductase, both tissue-purified and Escherichia coli-expressed, have been determined to reflect the membranes from which the enzyme was extracted. In addition, the cloned, wild-type NADPH-cytochrome P450 reductase exhibits an additional pair of signals downfield of the normal FAD pyrophosphate resonances reported by Otvos et al. [(1986) Biochemistry 25,7220-72281, but these signals are not observed with tissuepurified or mutant enzyme preparations. The Tyr,, -Asp,, mutant, which exhibits only 20% of wild-type activity, displays no gross changes in 31P NMR spectra. However, the Tyr178 -Asp178 mutant, which has no catalytic activity and does not bind FMN, exhibits no FMN 31P N M R signal and a normal, but low intensity, pair of signals for FAD. The latter experiments, taking advantage of mutations in residues putatively on either side of the FMN isoalloxazine ring, suggest subtle to severe changes in the binding of the flavin prosthetic groups and, perhaps, cooperative interactions of flavin binding to NADPH-cytochrome P450 reductase.
Journal of Biological …, 2001
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin c... more NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP ؉ has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the reface of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP ؉ lies against the FAD isoalloxazine ring with a tilt of ϳ30°b etween the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding andinteractions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis. . The abbreviations used are: CYPOR, NADPH-cytochrome P450 oxidoreductase; NOS, nitric-oxide synthase; FNR, ferredoxin-NADP ϩ reductase; r.m.s., root mean square.
Proceedings of the National Academy of Sciences of the United States of America, Jan 30, 2014
The diurnal variation in acetaminophen (APAP) hepatotoxicity (chronotoxicity) reportedly is drive... more The diurnal variation in acetaminophen (APAP) hepatotoxicity (chronotoxicity) reportedly is driven by oscillations in metabolism that are influenced by the circadian phases of feeding and fasting. To determine the relative contributions of the central clock and the hepatocyte circadian clock in modulating the chronotoxicity of APAP, we used a conditional null allele of brain and muscle Arnt-like 1 (Bmal1, aka Mop3 or Arntl) allowing deletion of the clock from hepatocytes while keeping the central and other peripheral clocks (e.g., the clocks controlling food intake) intact. We show that deletion of the hepatocyte clock dramatically reduces APAP bioactivation and toxicity in vivo and in vitro because of a reduction in NADPH-cytochrome P450 oxidoreductase gene expression, protein, and activity.
Nature, 1988
The prevalent forms of adult and childhood B-cell neoplasia are chronic lymphocytic (CLL) and acu... more The prevalent forms of adult and childhood B-cell neoplasia are chronic lymphocytic (CLL) and acute lymphocytic (ALL) leukaemia, and are typified by a nearly monoclonal accumulation of cells expressing a single heavy (H) and light (L) chain variable (V) region. V gene selection could be random, or quite biased if the disease or the developmental status of the transformed cell somehow influenced DNA rearrangement. We have cloned and sequenced three germ-line VH gene segments that constitute a new human VH family (subgroup V) linked within 160 kilobase pairs of the DH-JH complex. One VH(V) member is rearranged in about 30% of patients with CLL and ALL, but not in IgM-expressing B-cell lines from peripheral blood. In some tumours, we detect a truncated (VH(V) RNA devoid of constant regions that originates from unrearranged VH(V) genes. In other tumours and in resting splenocytes, we detect large amounts of normally sized VH(V)-associated mRNA, although stimulation by mitogen of splenic B cells results in loss of VH(V)-hybridizing RNA. These features suggest that biased rearrangement of subgroup V may be under developmental selection.
Proceedings of the National Academy of Sciences of the United States of America, Jan 30, 2014
The circadian clock plays a significant role in many aspects of female reproductive biology, incl... more The circadian clock plays a significant role in many aspects of female reproductive biology, including estrous cycling, ovulation, embryonic implantation, onset of puberty, and parturition. In an effort to link cell-specific circadian clocks to their specific roles in female reproduction, we used the promoter that controls expression of Steroidogenic Factor-1 (SF1) to drive Cre-recombinase-mediated deletion of the brain muscle arnt-like 1 (Bmal1) gene, known to encode an essential component of the circadian clock (SF1-Bmal1(-/-)). The resultant SF1-Bmal1(-/-) females display embryonic implantation failure, which is rescued by progesterone supplementation, or bilateral or unilateral transplantation of wild-type ovaries into SF1-Bmal1(-/-) dams. The observation that the central clock, and many other peripheral clocks, are fully functional in this model allows the assignment of the implantation phenotype to the clock in ovarian steroidogenic cells and distinguishes it from more general...
PLoS ONE, 2010
The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enla... more The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD) and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the ''mouse PPCD1'' phenotype and mapped the mouse locus for this phenotype, designated ''Ppcd1'', to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bp tm1a(KOMP)Wtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD. Citation: Shen AL, O'Leary KA, Dubielzig RR, Drinkwater N, Murphy CJ, et al. (2010) The PPCD1 Mouse: Characterization of a Mouse Model for Posterior Polymorphous Corneal Dystrophy and Identification of a Candidate Gene. PLoS ONE 5(8): e12213.
Journal of the American Chemical Society, 2001
1. J Am Chem Soc. 2001 May 16;123(19):4633-4. SEA-TROSY (solvent exposed amides with TROSY): a me... more 1. J Am Chem Soc. 2001 May 16;123(19):4633-4. SEA-TROSY (solvent exposed amides with TROSY): a method to resolve the problem of spectral overlap in very large proteins. Pellecchia M, Meininger D, Shen AL, Jack R, Kasper CB, Sem DS. ...
Journal of Biological Chemistry, 2011
The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain move... more The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp 147 and Arg 514 in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (>90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP ؉ revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ϳ20°compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP ؉ shows movement of the Gly 631 -Asn 635 loop. In the NADP ؉ -free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP ؉ shows movement of the Gly 631 -Asn 635 loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly 631 -Asn 635 loop movement controls NADPH binding and NADP ؉ release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners.
Journal of Biological Chemistry, 2002
The microsomal flavoprotein NADPH-cytochrome P450 oxidoreductase (CYPOR) is believed to function ... more The microsomal flavoprotein NADPH-cytochrome P450 oxidoreductase (CYPOR) is believed to function as the primary, if not sole, electron donor for the microsomal cytochrome P450 mixed-function oxidase system. Development of the mammalian embryo is dependent upon temporally and spatially regulated expression of signaling factors, many of which are synthesized and/or degraded via the cytochromes P450 and other pathways involving NADPH-cytochrome P450 oxidoreductase as the electron donor. Expression of CYPOR as early as the two-cell stage of embryonic development (The Institute for Genomic Research Mouse Gene Index, version 5.0, www.tigr.org/tdb/mgi) suggests that CYPOR is essential for normal cellular functions and/or early embryogenesis. Targeted deletion of the translation start site and membrane-binding domain of CYPOR abolished microsomal CYPOR expression and led to production of a truncated, 66-kDa protein localized to the cytoplasm. Although early embryogenesis was not affected, a variety of embryonic defects was observable by day 10.5 of gestation, leading to lethality by day 13.5. Furthermore, a deficiency of heterozygotes was observed in 2-weekold mice as well as late gestational age embryos, suggesting that loss of one CYPOR allele produced some embryonic lethality. CYPOR ؊/؊ embryos displayed a marked friability, consistent with defects in cell adhesion. Ninety percent of CYPOR ؊/؊ embryos isolated at days 10.5 or 11.5 of gestation could be classified as either Type I, characterized by grossly normal somite formation but having neural tube, cardiac, eye, and limb abnormalities, or Type II, characterized by a generalized retardation of development after approximately day 8.5 of gestation. No CYPOR ؊/؊ embryos were observed after day 13.5 of gestation. These studies demonstrate that loss of microsomal CYPOR does not block early embryonic development but is essential for progression past mid-gestation.
Biochemistry, 2003
The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure th... more The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure the rate of electron transfer to microsomal oxyferrous cytochrome (cyt) P450 2B4. In this reductase the FMN moiety can be reduced to the hydroquinone, FMNH(2), while the 5-deazaFAD moiety remains oxidized [Zhang, H., et al. (2003) Biochemistry 42, 6804-6813]. The rate of electron transfer from 5-deazaFAD cyt P450 reductase to oxyferrous cyt P450 was determined by rapidly mixing the ferrous cyt P450-2-electron-reduced 5-deazaFAD T491V reductase complex with oxygen in the presence of substrate. The 5-deazaFAD T491V reductase which can only donate a single electron reduces the oxyferrous cyt P450 and oxidizes to the air-stable semiquinone, with rate constants of 8.4 and 0.37 s(-1) at 15 degrees C. Surprisingly, oxyferrous cyt P450 turns over more slowly with a rate constant of 0.09 s(-1), which is the rate of catalysis under steady-state conditions at 15 degrees C (k(cat) = 0.08 s(-1)). In contrast, the rate constant for electron transfer from ferrous cyt b(5) to oxyferrous cyt P450 is 10 s(-1) with oxyferrous cyt P450 and cyt b(5) simultaneously undergoing spectral changes. Quantitative analyses by LC-MS/MS revealed that the product, norbenzphetamine, was formed with a coupling efficiency of 52% with cyt b(5) and 32% with 5-deazaFAD T491V reductase. Collectively, these results suggest that during catalysis a relatively stable reduced oxyferrous intermediate of cyt P450 is formed in the presence of cyt P450 reductase but not cyt b(5) and that the rate-limiting step in catalysis follows introduction of the second electron.
Biochemistry, 2003
NADPH-cytochrome P450 reductase is a flavoprotein which contains both an FAD and FMN cofactor. Si... more NADPH-cytochrome P450 reductase is a flavoprotein which contains both an FAD and FMN cofactor. Since the distribution of electrons is governed solely by the redox potentials of the cofactors, there are nine different ways the electrons can be distributed and hence nine possible unique forms of the protein. More than one species of reductase will exist at a given level of oxidation except when the protein is either totally reduced or oxidized. In an attempt to unambiguously characterize the redox properties of the physiologically relevant FMNH(2) form of the reductase, the T491V mutant of NADPH-cytochrome P450 reductase has been reconstituted with 5'-deazaFAD which binds to the FAD-binding site of the reductase with a K(d) of 94 nM. The 5'-deazaFAD cofactor does not undergo oxidation or reduction under our experimental conditions. The molar ratio of FMN to 5'-deazaFAD in the reconstituted reductase was 1.1. Residual FAD accounted for less than 5% of the total flavins. Addition of 2 electron equivalents to the 5'-deazaFAD T491V reductase from dithionite generated a stoichiometric amount of the FMN hydroquinone form of the protein. The 5'-deazaFAD moiety remained oxidized under these conditions due to its low redox potential (-650 mV). The 2-electron-reduced 5'-deazaFAD reductase was capable of transferring only a single electron from its FMN domain to its redox partners, ferric cytochrome c and cytochrome b(5). Reduction of the cytochromes and oxidation of the reductase occurred simultaneously. The FMNH(2) in the 5'-deazaFAD reductase autoxidizes with a first-order rate constant of 0.007 s(-)(1). Availability of a stable NADPH-cytochrome P450 reductase capable of donating only a single electron to its redox partners provides a unique tool for investigating the electron-transfer properties of an intact reductase molecule.
Biochemistry, 1996
Site-directed mutagenesis of Ser457 of NADPH-cytochrome P450 oxidoreductase demonstrates that thi... more Site-directed mutagenesis of Ser457 of NADPH-cytochrome P450 oxidoreductase demonstrates that this residue plays a major role in both hydride transfer from NADPH to FAD and modulation of FAD redox potential. Substitution of Ser457 with alanine or cysteine decreases the rates of reduction of the substrates cytochrome c and potassium ferricyanide approximately 100-fold, while substitution with threonine produces a 20-fold decrease in activity. No changes are observed in k(m)NADPH, KiNADP+, or flavin content, indicating that these substitutions have no effect on cofactor binding but affect catalysis only. k(m)cyt c values are decreased in parallel with the observed decreases in the rates of the reductive half-reaction. Stopped-flow studies with the S457A mutant show a 100-fold decrease in the rate of flavin reduction. The primary deuterium isotope effect on Kcat for cytochrome c reduction increases from 2.7 for the wild-type enzyme to 9.0 for the S457A mutant, consistent with a change in the rate-determining step from NADP+ release in the wild-type enzyme to hydride transfer in the S457A mutant. The primary deuterium isotope effect on K1 for flavin reduction at high ionic strength (I = 535 mM) increases from 12.2 for the wild-type enzyme to > 20 for the S457A mutant, consistent again with an increase in the relative rate limitation of hydride transfer. Furthermore, anaerobic titration of S457A indicates that the redox potential of the FAD semiquinone has been decreased. Data presented in this study support the hypothesis that Ser457 is involved in hydrogen bonding interactions which stabilize both the transition state for hydride transfer and the reduced FAD.
Biochemistry, 1992
31P N M R spectroscopy has been utilized in conjunction with site-directed mutagenesis and phosph... more 31P N M R spectroscopy has been utilized in conjunction with site-directed mutagenesis and phospholipid analysis to determine structural aspects of the prosthetic flavins, FAD and FMN, of NADPH-cytochrome P450 reductase. Comparisons are made among detergent-solubilized and protease (steapsin)-solubilized preparations of porcine liver reductases, showing unequivocally that the 31P N M R signals at -0.0 ppm in the detergent-solubilized, hydrophobic form are attributable to phospholipids. By extraction and TLC analysis, the phospholipid contents of detergent-solubilized rat liver reductase, both tissue-purified and Escherichia coli-expressed, have been determined to reflect the membranes from which the enzyme was extracted. In addition, the cloned, wild-type NADPH-cytochrome P450 reductase exhibits an additional pair of signals downfield of the normal FAD pyrophosphate resonances reported by Otvos et al. [(1986) Biochemistry 25,7220-72281, but these signals are not observed with tissuepurified or mutant enzyme preparations. The Tyr,, -Asp,, mutant, which exhibits only 20% of wild-type activity, displays no gross changes in 31P NMR spectra. However, the Tyr178 -Asp178 mutant, which has no catalytic activity and does not bind FMN, exhibits no FMN 31P N M R signal and a normal, but low intensity, pair of signals for FAD. The latter experiments, taking advantage of mutations in residues putatively on either side of the FMN isoalloxazine ring, suggest subtle to severe changes in the binding of the flavin prosthetic groups and, perhaps, cooperative interactions of flavin binding to NADPH-cytochrome P450 reductase.
Journal of Biological …, 2001
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin c... more NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP ؉ has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the reface of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP ؉ lies against the FAD isoalloxazine ring with a tilt of ϳ30°b etween the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding andinteractions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis. . The abbreviations used are: CYPOR, NADPH-cytochrome P450 oxidoreductase; NOS, nitric-oxide synthase; FNR, ferredoxin-NADP ϩ reductase; r.m.s., root mean square.
Proceedings of the National Academy of Sciences of the United States of America, Jan 30, 2014
The diurnal variation in acetaminophen (APAP) hepatotoxicity (chronotoxicity) reportedly is drive... more The diurnal variation in acetaminophen (APAP) hepatotoxicity (chronotoxicity) reportedly is driven by oscillations in metabolism that are influenced by the circadian phases of feeding and fasting. To determine the relative contributions of the central clock and the hepatocyte circadian clock in modulating the chronotoxicity of APAP, we used a conditional null allele of brain and muscle Arnt-like 1 (Bmal1, aka Mop3 or Arntl) allowing deletion of the clock from hepatocytes while keeping the central and other peripheral clocks (e.g., the clocks controlling food intake) intact. We show that deletion of the hepatocyte clock dramatically reduces APAP bioactivation and toxicity in vivo and in vitro because of a reduction in NADPH-cytochrome P450 oxidoreductase gene expression, protein, and activity.