Annamaria Merico - Academia.edu (original) (raw)
Papers by Annamaria Merico
Therapeutic Advances in Rare Disease
Background: The International Rare Diseases Research Consortium (IRDiRC) is an international init... more Background: The International Rare Diseases Research Consortium (IRDiRC) is an international initiative that aims to use research to facilitate rapid diagnosis and treatment of rare diseases. Objective: IRDiRC launched the Chrysalis Task Force to identify key financial and nonfinancial factors that make rare disease research and development attractive to companies. Methods: The Chrysalis Task Force was comprised of thought leaders from companies, patient advocacy groups, regulatory agencies, and research funders. The Task Force created a survey that was distributed to companies of different sizes with varied investment portfolios and interests in rare disease research. Based on the survey results, the Task Force then conducted targeted interviews. Results: The survey and interview respondents identified several factors that make rare disease research and development attractive (e.g. a good understanding of the underlying biology) as well as barriers (e.g. absence of an advocacy orga...
Research in Microbiology, Nov 30, 2002
The effect of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyc... more The effect of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyces lactis was studied in batch and in continuous cultures. The Kltpi1 mutant was able to grow on media containing glucose as the sole carbon source both in batch and in continuous culture, unlike the corresponding S. cerevisiae mutant. In K. lactis tpi1 mutant no glycerol production was detected in chemostat cultivations. DHAP accumulation triggers glycerol production only when glucose is the sole carbon source in excess. The analysis of the activities of some key enzymes of carbon metabolism shows that in chemostat cultivations on mixed-substrates the activities of enzymes involved in ethanol assimilation are higher both in K. lactis wild type and mutant strains than in S. cerevisiae.
Journal of Industrial Microbiology and Biotechnology, 2011
Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able t... more Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step fermentation strategy: the first step under aerobic conditions for fast production of biomass from mixtures of hexoses and pentoses, followed by a second step under oxygen limitation to promote ethanol production. Under these conditions we obtained biomass and ethanol production on synthetic lignocellulosic hydrolysates, with ethanol yields ranging from 0.2 to 0.3 g g(-1) sugar. Hexoses, xylose and arabinose were consumed at the end of the process, resulting in 13 g l(-1) of ethanol, even in the presence of furfural. Our studies showed that Brettanomyces/Dekkera yeasts have clear potential for further development for industrial processes aimed at production of ethanol from renewable sources.
Journal of Industrial Microbiology and Biotechnology, 2011
Glycerol is a residue generated during biodiesel production and represents around 10% of the tota... more Glycerol is a residue generated during biodiesel production and represents around 10% of the total product output. Biodiesel production is currently having a significant impact on glycerol price, leading to an increased interest in the use of glycerol as a cheap substrate for fermentation processes. We have analysed the growth kinetics of two wild-type strains of Saccharomyces cerevisiae grown on synthetic media containing glycerol as the sole carbon and energy source. Both strains were initially unable to grow when cultivated under these conditions, and an unusually long lag phase was necessary prior to the appearance of slow-growing cells. Following the application of an "evolutionary engineering" approach, we obtained S. cerevisiae strains with an improved ability to grow on glycerol. We report here the isolation of an evolved strain that exhibits a reduction of the lag phase, a threefold increase of the specific growth rate and a higher glycerol consumption rate compared to wild-type strains. The evolved strain has retained its fermentative activity, producing ethanol at the same rate and yield as the wild type. Interestingly, the yeast biomass obtained by cultivating the evolved strain on synthetic glycerol-based media also showed a high viability after prolonged storage at -20°C. The strategy adopted in our study could be easily applied to obtain S. cerevisiae strains with new industrially relevant traits, such as an improved ability to use cheap substrates and high resistance to freeze and thaw procedures.
Journal of Biotechnology, Dec 15, 2006
The optimization of production strategy is a very useful tool to attain high level of recombinant... more The optimization of production strategy is a very useful tool to attain high level of recombinant protein at a low cost. A promising biotechnological application of psychrophilic bacteria is their use as non-conventional host for the recombinant production of useful proteins. The lowering of the expression temperature can in fact facilitate the correct folding of heterologous proteins that accumulate in insoluble form as inclusion bodies when produced in Escherichia coli. An example of such "difficult" proteins is the human nerve growth factor (hNGF). The gene encoding the mature form of hNGF was expressed in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 at 4 degrees C. Western blotting experiments demonstrated that the protein was produced in soluble form and translocated in the periplasmic space. Furthermore, an analytical gel filtration chromatography confirmed that the recombinant protein was largely in dimeric form. For a more efficient recombinant rhNGF production, the influence of cultivation operational strategies and growth conditions (medium composition, temperature, specific growth rate) on biomass yield and recombinant protein production was investigated in batch and chemostat cultivations. The highest product yield of soluble rhNGF (7.5mg(NGF)g(dryweight)(-1)) has been achieved in batch culture at 4 degrees C on Schatz medium with addition of tryptone and vitamins.
FEMS yeast research, 2007
Na,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are prod... more Na,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are produced by assembly of four alpha- and three beta-subunits. The expression of the alpha3/beta1 isozyme is confined to brain and heart. Its heterologous production has so far never been attempted in a lower eukaryote. In this work we explored whether the methylotrophic yeast Pichia pastoris is capable of expressing the alpha3/beta1 isoform of human Na,K-ATPase. cDNAs encoding the alpha(3) and the beta(1)-subunits were cloned under the control of the inducible promoter of Pichia pastoris alcohol oxidase 1. Pichia pastoris could express the single alpha3- and beta1-subunits and even coexpress them after methanol induction. beta1-subunit was produced as a major 44-kDa glycosylated polypeptide and alpha3 as a 110-kDa unglycosylated polypeptide. Expression at the plasma membrane was limited in shaking flask cultures but by cultivating P. pastoris cells in a fermenter there was a 10-fold increase ...
Yeast, 2001
The ZbTPI1 gene encoding triose phosphate isomerase (TIM) was cloned from a Zygosaccharomyces bai... more The ZbTPI1 gene encoding triose phosphate isomerase (TIM) was cloned from a Zygosaccharomyces bailii genomic library by complementation of the Saccharomyces cerevisiae tpi1 mutant strain. The nucleotide sequence of a 1.5 kb fragment showed an open reading frame (ORF) of 746 bp, encoding a protein of 248 amino acid residues. The deduced amino acid sequence shares a high degree of homology with TIMs from other yeast species, including some highly conserved regions. The analysis of the promoter sequence of the ZbTPI1 revealed the presence of putative motifs known to have regulatory functions in S. cerevisiae. The GenBank Accession No. of ZbTPI1 is AF325852.
Trends in Genetics, 2006
Brewing and wine production are among the oldest technologies and their products are almost indis... more Brewing and wine production are among the oldest technologies and their products are almost indispensable in our lives. The central biological agents of beer and wine fermentation are yeasts belonging to the genus Saccharomyces, which can accumulate ethanol. Recent advances in comparative genomics and bioinformatics have made it possible to elucidate when and why yeasts produce ethanol in high concentrations, and how this remarkable trait originated and developed during their evolutionary history. Two research groups have shed light on the origin of the genes encoding alcohol dehydrogenase and the process of ethanol accumulation in Saccharomyces cerevisiae.
FEBS Journal, 2007
The concentration of oxygen in the environment is one of the most important factors that regulate... more The concentration of oxygen in the environment is one of the most important factors that regulate energy conversion in living cells. Organisms have developed multiple processes to optimize the utilization of oxygen when its availability is reduced. According to the role of oxygen in their metabolism, yeasts can be classified as: (a) obligate aerobes, displaying an exclusively respiratory metabolism; (b) facultative fermentatives, displaying both respiratory and fermentative metabolism; and (c) obligate fermentatives. The ability of yeasts to grow in very oxygen-limited conditions is strictly dependent on the ability to perform alcoholic fermentation, allowing reoxidation of NADH generated during glycolysis. In Saccharomyces cerevisiae, fermentation predominates over respiration when glucose concentrations are high, even under aerobic conditions. Depending on this characteristic, yeasts are classified as Crabtree-positive or Crabtreenegative. Thus, in Crabtree-positive yeasts, such as S. cerevisiae, NADH is mainly oxidized in glucose-
Research in Microbiology, 2002
The effect of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyc... more The effect of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyces lactis was studied in batch and in continuous cultures. The Kltpi1 mutant was able to grow on media containing glucose as the sole carbon source both in batch and in continuous culture, unlike the corresponding S. cerevisiae mutant. In K. lactis tpi1 mutant no glycerol production was detected in chemostat cultivations. DHAP accumulation triggers glycerol production only when glucose is the sole carbon source in excess. The analysis of the activities of some key enzymes of carbon metabolism shows that in chemostat cultivations on mixed-substrates the activities of enzymes involved in ethanol assimilation are higher both in K. lactis wild type and mutant strains than in S. cerevisiae.
Nucleosides, Nucleotides and Nucleic Acids, 2006
2 The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is invo... more 2 The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was present in the ancient yeasts but was lost approximately 100 million years ago in the S. cerevisiae lineage.
Journal of Molecular Biology, 2008
Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are de... more Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyveri, we show that during degradation, uracil is not reduced to dihydrouracil. Six loci, named URC1-6 (for uracil catabolism), are involved in the novel catabolic pathway. Four of them, URC3,5, URC6, and URC2 encode urea amidolyase, uracil phosphoribosyltransferase, and a putative transcription factor, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1p and Urc4p are therefore likely the core components of this novel biochemical pathway. A combination of genetic and analytical chemistry methods demonstrates that uridine monophosphate and urea are intermediates, and 3-hydroxypropionic acid, ammonia and carbon dioxide the final products of degradation. The URC pathway does not require the presence of an active respiratory chain and is therefore different from the oxidative and rut pathways described in prokaryotes, although the latter also gives 3-hydroxypropionic acid as the end product. The genes of the URC pathway are not homologous to any of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.
Journal of Biotechnology, 2004
The optimization and scale-up of a specific protein production process have to take into account ... more The optimization and scale-up of a specific protein production process have to take into account cultural conditions as well as cell physiology of growth and influence of foreign protein expression on host cell metabolism. Growth on cheap substrates, efficient secretion ability and a weaker tendency to hypermannosilate proteins than S. cerevisiae, make K. lactis an excellent and well-accepted host for heterologous protein production, even for human use. A fairly good heterologous glucoamylase yield and the setting of the optimal conditions to produce it were obtained expressing the Arxula adeninivorans glucoamylase in a strain of K. lactis and its isogenic mutant, which seems to have higher secretion ability. We performed batch cultures of both strains to analyze the influence of different physiological and environmental parameters on glucoamylase production/secretion. Interestingly, the maintenance of pH in the range of neutrality causes the consumption of a larger amount of carbon source, a longer time of production and a better stability of the active form of the enzyme, thus increasing biomass and glucoamylase production. Furthermore, the enrichment of the culture medium adds up to the action of pH control, forcing the mutant production/secretion to higher levels.
Journal of Biotechnology, 2006
The optimization of production strategy is a very useful tool to attain high level of recombinant... more The optimization of production strategy is a very useful tool to attain high level of recombinant protein at a low cost. A promising biotechnological application of psychrophilic bacteria is their use as non-conventional host for the recombinant production of useful proteins. The lowering of the expression temperature can in fact facilitate the correct folding of heterologous proteins that accumulate in insoluble form as inclusion bodies when produced in Escherichia coli. An example of such "difficult" proteins is the human nerve growth factor (hNGF). The gene encoding the mature form of hNGF was expressed in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 at 4 degrees C. Western blotting experiments demonstrated that the protein was produced in soluble form and translocated in the periplasmic space. Furthermore, an analytical gel filtration chromatography confirmed that the recombinant protein was largely in dimeric form. For a more efficient recombinant rhNGF production, the influence of cultivation operational strategies and growth conditions (medium composition, temperature, specific growth rate) on biomass yield and recombinant protein production was investigated in batch and chemostat cultivations. The highest product yield of soluble rhNGF (7.5mg(NGF)g(dryweight)(-1)) has been achieved in batch culture at 4 degrees C on Schatz medium with addition of tryptone and vitamins.
Journal of industrial microbiology & biotechnology, 2011
Glycerol is a residue generated during biodiesel production and represents around 10% of the tota... more Glycerol is a residue generated during biodiesel production and represents around 10% of the total product output. Biodiesel production is currently having a significant impact on glycerol price, leading to an increased interest in the use of glycerol as a cheap substrate for fermentation processes. We have analysed the growth kinetics of two wild-type strains of Saccharomyces cerevisiae grown on synthetic media containing glycerol as the sole carbon and energy source. Both strains were initially unable to grow when cultivated under these conditions, and an unusually long lag phase was necessary prior to the appearance of slow-growing cells. Following the application of an "evolutionary engineering" approach, we obtained S. cerevisiae strains with an improved ability to grow on glycerol. We report here the isolation of an evolved strain that exhibits a reduction of the lag phase, a threefold increase of the specific growth rate and a higher glycerol consumption rate compar...
Journal of industrial microbiology & biotechnology, 2011
Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able t... more Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step...
Nature communications, 2011
Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the ... more Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make-accumulate-consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the...
FEMS Yeast Research, 2005
The optimisation and scale-up of a specific protein production process have to take into account ... more The optimisation and scale-up of a specific protein production process have to take into account cultivation conditions as well as cell physiology of growth and the influence of foreign protein expression on host cell metabolism. The ability of Zygosaccharomyces bailii to tolerate high sugar concentrations as well as high temperatures and acidic environments renders this ''non-conventional'' yeast suitable for the development of biotechnological processes like heterologous protein production. This work addresses the production of human interleukin-1b by a recombinant Z. bailii strain. We found that the heterologous protein production causes some modifications of the Z. bailii carbon metabolism, leading to a reduced biomass yield. The other important factor is the dependence of the recombinant IL-1b production/secretion on the growth rate. Among the cultivation strategies studied, the most appropriate in terms of production and productivity was the fed-batch mode.
FEMS Yeast Research, 2009
Yeasts belonging to the lineage that underwent whole-genome duplication (WGD) possess a good ferm... more Yeasts belonging to the lineage that underwent whole-genome duplication (WGD) possess a good fermentative potential and can proliferate in the absence of oxygen. In this study, we analyzed the pre-WGD yeast Kluyveromyces lactis and its ability to grow under oxygen-limited conditions. Under these conditions, K. lactis starts to increase the glucose metabolism and accumulates ethanol and glycerol. However, under more limited conditions, the fermentative metabolism decreases, causing a slow growth rate. In contrast, Saccharomyces cerevisiae and Saccharomyces kluyveri in anaerobiosis exhibit almost the same growth rate as in aerobiosis. In this work, we showed that in K. lactis, under oxygen-limited conditions, a decreased expression of RAG1 occurred. The activity of glucose-6-phosphate dehydrogenase also decreased, likely causing a reduced flux in the pentose phosphate pathway. Comparison of related and characterized yeasts suggests that the behavior observed in K. lactis could reflect the lack of an efficient mechanism to maintain a high glycolytic flux and to balance the redox homeostasis under hypoxic conditions. This could be a consequence of a recent specialization of K. lactis toward living in a niche where the ethanol accumulation at high oxygen concentrations and the ability to survive at a low oxygen concentration do not represent an advantage.
FEMS Yeast Research, 2008
Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of of... more Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of off-flavours identified as vinyl-and especially ethyl-phenols, but these yeasts can also produce several other spoiling metabolites, such as acetic acid and biogenic amines. Little information is available about the correlation between growth, viability and off-flavour and biogenic amine production. In the present work, five strains of Dekkera bruxellensis isolated from wine were analysed over 3 months in wine-like environment for growth, cell survival, carbon source utilization and production of volatile phenols and biogenic amines. Our data indicate that the wine spoilage potential of D. bruxellensis is strain dependent, being strictly associated with the ability to grow under oenological conditions. 4-Ethyl-phenol and 4-ethyl-guaiacol production ranged between 0 and 2.7 and 2 mg L À1 , respectively, depending on the growth conditions. Putrescine, cadaverine and spermidine were the biogenic amines found.
Therapeutic Advances in Rare Disease
Background: The International Rare Diseases Research Consortium (IRDiRC) is an international init... more Background: The International Rare Diseases Research Consortium (IRDiRC) is an international initiative that aims to use research to facilitate rapid diagnosis and treatment of rare diseases. Objective: IRDiRC launched the Chrysalis Task Force to identify key financial and nonfinancial factors that make rare disease research and development attractive to companies. Methods: The Chrysalis Task Force was comprised of thought leaders from companies, patient advocacy groups, regulatory agencies, and research funders. The Task Force created a survey that was distributed to companies of different sizes with varied investment portfolios and interests in rare disease research. Based on the survey results, the Task Force then conducted targeted interviews. Results: The survey and interview respondents identified several factors that make rare disease research and development attractive (e.g. a good understanding of the underlying biology) as well as barriers (e.g. absence of an advocacy orga...
Research in Microbiology, Nov 30, 2002
The effect of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyc... more The effect of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyces lactis was studied in batch and in continuous cultures. The Kltpi1 mutant was able to grow on media containing glucose as the sole carbon source both in batch and in continuous culture, unlike the corresponding S. cerevisiae mutant. In K. lactis tpi1 mutant no glycerol production was detected in chemostat cultivations. DHAP accumulation triggers glycerol production only when glucose is the sole carbon source in excess. The analysis of the activities of some key enzymes of carbon metabolism shows that in chemostat cultivations on mixed-substrates the activities of enzymes involved in ethanol assimilation are higher both in K. lactis wild type and mutant strains than in S. cerevisiae.
Journal of Industrial Microbiology and Biotechnology, 2011
Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able t... more Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step fermentation strategy: the first step under aerobic conditions for fast production of biomass from mixtures of hexoses and pentoses, followed by a second step under oxygen limitation to promote ethanol production. Under these conditions we obtained biomass and ethanol production on synthetic lignocellulosic hydrolysates, with ethanol yields ranging from 0.2 to 0.3 g g(-1) sugar. Hexoses, xylose and arabinose were consumed at the end of the process, resulting in 13 g l(-1) of ethanol, even in the presence of furfural. Our studies showed that Brettanomyces/Dekkera yeasts have clear potential for further development for industrial processes aimed at production of ethanol from renewable sources.
Journal of Industrial Microbiology and Biotechnology, 2011
Glycerol is a residue generated during biodiesel production and represents around 10% of the tota... more Glycerol is a residue generated during biodiesel production and represents around 10% of the total product output. Biodiesel production is currently having a significant impact on glycerol price, leading to an increased interest in the use of glycerol as a cheap substrate for fermentation processes. We have analysed the growth kinetics of two wild-type strains of Saccharomyces cerevisiae grown on synthetic media containing glycerol as the sole carbon and energy source. Both strains were initially unable to grow when cultivated under these conditions, and an unusually long lag phase was necessary prior to the appearance of slow-growing cells. Following the application of an "evolutionary engineering" approach, we obtained S. cerevisiae strains with an improved ability to grow on glycerol. We report here the isolation of an evolved strain that exhibits a reduction of the lag phase, a threefold increase of the specific growth rate and a higher glycerol consumption rate compared to wild-type strains. The evolved strain has retained its fermentative activity, producing ethanol at the same rate and yield as the wild type. Interestingly, the yeast biomass obtained by cultivating the evolved strain on synthetic glycerol-based media also showed a high viability after prolonged storage at -20°C. The strategy adopted in our study could be easily applied to obtain S. cerevisiae strains with new industrially relevant traits, such as an improved ability to use cheap substrates and high resistance to freeze and thaw procedures.
Journal of Biotechnology, Dec 15, 2006
The optimization of production strategy is a very useful tool to attain high level of recombinant... more The optimization of production strategy is a very useful tool to attain high level of recombinant protein at a low cost. A promising biotechnological application of psychrophilic bacteria is their use as non-conventional host for the recombinant production of useful proteins. The lowering of the expression temperature can in fact facilitate the correct folding of heterologous proteins that accumulate in insoluble form as inclusion bodies when produced in Escherichia coli. An example of such "difficult" proteins is the human nerve growth factor (hNGF). The gene encoding the mature form of hNGF was expressed in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 at 4 degrees C. Western blotting experiments demonstrated that the protein was produced in soluble form and translocated in the periplasmic space. Furthermore, an analytical gel filtration chromatography confirmed that the recombinant protein was largely in dimeric form. For a more efficient recombinant rhNGF production, the influence of cultivation operational strategies and growth conditions (medium composition, temperature, specific growth rate) on biomass yield and recombinant protein production was investigated in batch and chemostat cultivations. The highest product yield of soluble rhNGF (7.5mg(NGF)g(dryweight)(-1)) has been achieved in batch culture at 4 degrees C on Schatz medium with addition of tryptone and vitamins.
FEMS yeast research, 2007
Na,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are prod... more Na,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are produced by assembly of four alpha- and three beta-subunits. The expression of the alpha3/beta1 isozyme is confined to brain and heart. Its heterologous production has so far never been attempted in a lower eukaryote. In this work we explored whether the methylotrophic yeast Pichia pastoris is capable of expressing the alpha3/beta1 isoform of human Na,K-ATPase. cDNAs encoding the alpha(3) and the beta(1)-subunits were cloned under the control of the inducible promoter of Pichia pastoris alcohol oxidase 1. Pichia pastoris could express the single alpha3- and beta1-subunits and even coexpress them after methanol induction. beta1-subunit was produced as a major 44-kDa glycosylated polypeptide and alpha3 as a 110-kDa unglycosylated polypeptide. Expression at the plasma membrane was limited in shaking flask cultures but by cultivating P. pastoris cells in a fermenter there was a 10-fold increase ...
Yeast, 2001
The ZbTPI1 gene encoding triose phosphate isomerase (TIM) was cloned from a Zygosaccharomyces bai... more The ZbTPI1 gene encoding triose phosphate isomerase (TIM) was cloned from a Zygosaccharomyces bailii genomic library by complementation of the Saccharomyces cerevisiae tpi1 mutant strain. The nucleotide sequence of a 1.5 kb fragment showed an open reading frame (ORF) of 746 bp, encoding a protein of 248 amino acid residues. The deduced amino acid sequence shares a high degree of homology with TIMs from other yeast species, including some highly conserved regions. The analysis of the promoter sequence of the ZbTPI1 revealed the presence of putative motifs known to have regulatory functions in S. cerevisiae. The GenBank Accession No. of ZbTPI1 is AF325852.
Trends in Genetics, 2006
Brewing and wine production are among the oldest technologies and their products are almost indis... more Brewing and wine production are among the oldest technologies and their products are almost indispensable in our lives. The central biological agents of beer and wine fermentation are yeasts belonging to the genus Saccharomyces, which can accumulate ethanol. Recent advances in comparative genomics and bioinformatics have made it possible to elucidate when and why yeasts produce ethanol in high concentrations, and how this remarkable trait originated and developed during their evolutionary history. Two research groups have shed light on the origin of the genes encoding alcohol dehydrogenase and the process of ethanol accumulation in Saccharomyces cerevisiae.
FEBS Journal, 2007
The concentration of oxygen in the environment is one of the most important factors that regulate... more The concentration of oxygen in the environment is one of the most important factors that regulate energy conversion in living cells. Organisms have developed multiple processes to optimize the utilization of oxygen when its availability is reduced. According to the role of oxygen in their metabolism, yeasts can be classified as: (a) obligate aerobes, displaying an exclusively respiratory metabolism; (b) facultative fermentatives, displaying both respiratory and fermentative metabolism; and (c) obligate fermentatives. The ability of yeasts to grow in very oxygen-limited conditions is strictly dependent on the ability to perform alcoholic fermentation, allowing reoxidation of NADH generated during glycolysis. In Saccharomyces cerevisiae, fermentation predominates over respiration when glucose concentrations are high, even under aerobic conditions. Depending on this characteristic, yeasts are classified as Crabtree-positive or Crabtreenegative. Thus, in Crabtree-positive yeasts, such as S. cerevisiae, NADH is mainly oxidized in glucose-
Research in Microbiology, 2002
The effect of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyc... more The effect of the loss of triose phosphate isomerase activity on carbon metabolism in Kluyveromyces lactis was studied in batch and in continuous cultures. The Kltpi1 mutant was able to grow on media containing glucose as the sole carbon source both in batch and in continuous culture, unlike the corresponding S. cerevisiae mutant. In K. lactis tpi1 mutant no glycerol production was detected in chemostat cultivations. DHAP accumulation triggers glycerol production only when glucose is the sole carbon source in excess. The analysis of the activities of some key enzymes of carbon metabolism shows that in chemostat cultivations on mixed-substrates the activities of enzymes involved in ethanol assimilation are higher both in K. lactis wild type and mutant strains than in S. cerevisiae.
Nucleosides, Nucleotides and Nucleic Acids, 2006
2 The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is invo... more 2 The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was present in the ancient yeasts but was lost approximately 100 million years ago in the S. cerevisiae lineage.
Journal of Molecular Biology, 2008
Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are de... more Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyveri, we show that during degradation, uracil is not reduced to dihydrouracil. Six loci, named URC1-6 (for uracil catabolism), are involved in the novel catabolic pathway. Four of them, URC3,5, URC6, and URC2 encode urea amidolyase, uracil phosphoribosyltransferase, and a putative transcription factor, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1p and Urc4p are therefore likely the core components of this novel biochemical pathway. A combination of genetic and analytical chemistry methods demonstrates that uridine monophosphate and urea are intermediates, and 3-hydroxypropionic acid, ammonia and carbon dioxide the final products of degradation. The URC pathway does not require the presence of an active respiratory chain and is therefore different from the oxidative and rut pathways described in prokaryotes, although the latter also gives 3-hydroxypropionic acid as the end product. The genes of the URC pathway are not homologous to any of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.
Journal of Biotechnology, 2004
The optimization and scale-up of a specific protein production process have to take into account ... more The optimization and scale-up of a specific protein production process have to take into account cultural conditions as well as cell physiology of growth and influence of foreign protein expression on host cell metabolism. Growth on cheap substrates, efficient secretion ability and a weaker tendency to hypermannosilate proteins than S. cerevisiae, make K. lactis an excellent and well-accepted host for heterologous protein production, even for human use. A fairly good heterologous glucoamylase yield and the setting of the optimal conditions to produce it were obtained expressing the Arxula adeninivorans glucoamylase in a strain of K. lactis and its isogenic mutant, which seems to have higher secretion ability. We performed batch cultures of both strains to analyze the influence of different physiological and environmental parameters on glucoamylase production/secretion. Interestingly, the maintenance of pH in the range of neutrality causes the consumption of a larger amount of carbon source, a longer time of production and a better stability of the active form of the enzyme, thus increasing biomass and glucoamylase production. Furthermore, the enrichment of the culture medium adds up to the action of pH control, forcing the mutant production/secretion to higher levels.
Journal of Biotechnology, 2006
The optimization of production strategy is a very useful tool to attain high level of recombinant... more The optimization of production strategy is a very useful tool to attain high level of recombinant protein at a low cost. A promising biotechnological application of psychrophilic bacteria is their use as non-conventional host for the recombinant production of useful proteins. The lowering of the expression temperature can in fact facilitate the correct folding of heterologous proteins that accumulate in insoluble form as inclusion bodies when produced in Escherichia coli. An example of such "difficult" proteins is the human nerve growth factor (hNGF). The gene encoding the mature form of hNGF was expressed in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 at 4 degrees C. Western blotting experiments demonstrated that the protein was produced in soluble form and translocated in the periplasmic space. Furthermore, an analytical gel filtration chromatography confirmed that the recombinant protein was largely in dimeric form. For a more efficient recombinant rhNGF production, the influence of cultivation operational strategies and growth conditions (medium composition, temperature, specific growth rate) on biomass yield and recombinant protein production was investigated in batch and chemostat cultivations. The highest product yield of soluble rhNGF (7.5mg(NGF)g(dryweight)(-1)) has been achieved in batch culture at 4 degrees C on Schatz medium with addition of tryptone and vitamins.
Journal of industrial microbiology & biotechnology, 2011
Glycerol is a residue generated during biodiesel production and represents around 10% of the tota... more Glycerol is a residue generated during biodiesel production and represents around 10% of the total product output. Biodiesel production is currently having a significant impact on glycerol price, leading to an increased interest in the use of glycerol as a cheap substrate for fermentation processes. We have analysed the growth kinetics of two wild-type strains of Saccharomyces cerevisiae grown on synthetic media containing glycerol as the sole carbon and energy source. Both strains were initially unable to grow when cultivated under these conditions, and an unusually long lag phase was necessary prior to the appearance of slow-growing cells. Following the application of an "evolutionary engineering" approach, we obtained S. cerevisiae strains with an improved ability to grow on glycerol. We report here the isolation of an evolved strain that exhibits a reduction of the lag phase, a threefold increase of the specific growth rate and a higher glycerol consumption rate compar...
Journal of industrial microbiology & biotechnology, 2011
Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able t... more Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step...
Nature communications, 2011
Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the ... more Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make-accumulate-consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the...
FEMS Yeast Research, 2005
The optimisation and scale-up of a specific protein production process have to take into account ... more The optimisation and scale-up of a specific protein production process have to take into account cultivation conditions as well as cell physiology of growth and the influence of foreign protein expression on host cell metabolism. The ability of Zygosaccharomyces bailii to tolerate high sugar concentrations as well as high temperatures and acidic environments renders this ''non-conventional'' yeast suitable for the development of biotechnological processes like heterologous protein production. This work addresses the production of human interleukin-1b by a recombinant Z. bailii strain. We found that the heterologous protein production causes some modifications of the Z. bailii carbon metabolism, leading to a reduced biomass yield. The other important factor is the dependence of the recombinant IL-1b production/secretion on the growth rate. Among the cultivation strategies studied, the most appropriate in terms of production and productivity was the fed-batch mode.
FEMS Yeast Research, 2009
Yeasts belonging to the lineage that underwent whole-genome duplication (WGD) possess a good ferm... more Yeasts belonging to the lineage that underwent whole-genome duplication (WGD) possess a good fermentative potential and can proliferate in the absence of oxygen. In this study, we analyzed the pre-WGD yeast Kluyveromyces lactis and its ability to grow under oxygen-limited conditions. Under these conditions, K. lactis starts to increase the glucose metabolism and accumulates ethanol and glycerol. However, under more limited conditions, the fermentative metabolism decreases, causing a slow growth rate. In contrast, Saccharomyces cerevisiae and Saccharomyces kluyveri in anaerobiosis exhibit almost the same growth rate as in aerobiosis. In this work, we showed that in K. lactis, under oxygen-limited conditions, a decreased expression of RAG1 occurred. The activity of glucose-6-phosphate dehydrogenase also decreased, likely causing a reduced flux in the pentose phosphate pathway. Comparison of related and characterized yeasts suggests that the behavior observed in K. lactis could reflect the lack of an efficient mechanism to maintain a high glycolytic flux and to balance the redox homeostasis under hypoxic conditions. This could be a consequence of a recent specialization of K. lactis toward living in a niche where the ethanol accumulation at high oxygen concentrations and the ability to survive at a low oxygen concentration do not represent an advantage.
FEMS Yeast Research, 2008
Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of of... more Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of off-flavours identified as vinyl-and especially ethyl-phenols, but these yeasts can also produce several other spoiling metabolites, such as acetic acid and biogenic amines. Little information is available about the correlation between growth, viability and off-flavour and biogenic amine production. In the present work, five strains of Dekkera bruxellensis isolated from wine were analysed over 3 months in wine-like environment for growth, cell survival, carbon source utilization and production of volatile phenols and biogenic amines. Our data indicate that the wine spoilage potential of D. bruxellensis is strain dependent, being strictly associated with the ability to grow under oenological conditions. 4-Ethyl-phenol and 4-ethyl-guaiacol production ranged between 0 and 2.7 and 2 mg L À1 , respectively, depending on the growth conditions. Putrescine, cadaverine and spermidine were the biogenic amines found.