Anurag Lodha - Academia.edu (original) (raw)

Papers by Anurag Lodha

Research paper thumbnail of Effect of Annealing on Structure and Morphology of Electroactive Polyaniline for Applications in Microelectronics

Research paper thumbnail of Prospects of manufacturing organic semiconductor-based integrated circuits

IEEE Transactions on Semiconductor Manufacturing, 2001

Page 1. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 14, NO. 3, AUGUST 2001 281 Prospec... more Page 1. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 14, NO. 3, AUGUST 2001 281 Prospects of Manufacturing Organic Semiconductor-Based Integrated CircuitsAnurag Lodha, Student Member, IEEE, and Rajendra Singh, Senior Member, IEEE ...

Research paper thumbnail of Effect of annealing on electrical conductivity and morphology of polyaniline films

Journal of Applied Polymer Science, 2001

We report structure–property relationships of polyaniline emeraldine base (EB) films that were pr... more We report structure–property relationships of polyaniline emeraldine base (EB) films that were produced by combining different processing steps in various sequences. The effect of annealing and doping processes on the surface structure of the films was investigated by atomic force microscopy (AFM), and the corresponding changes to the chemical structure of the EB films were monitored by Fourier transform infrared spectroscopy. AFM results indicate that after doping polyaniline (EB) films with HCl, the root mean square (rms) roughness of the surface of EB film increased ∼ 46%. When the doped films were annealed at 180°C under a nitrogen atmosphere for 3 h, the rms roughness was essentially unchanged from that of the initial, undoped films. The electrical conductivity of the films also showed a significant dependence on the processing sequence. When the doped polyaniline (EB) films were annealed, no electrical conductivity was observed. When these films were redoped, only ∼ 6% of the initial conductivity could be recovered. In another processing sequence in which the polyaniline (EB) films were first annealed and then doped, the electrical conductivity was only ∼ 12% relative to the film that was doped immediately after being cast. From this work, a strategy to reduce the surface roughness of films made from electrically conducting polyaniline (EB) is proposed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3602–3610, 2001

Research paper thumbnail of Effect of annealing on electrical conductivity and morphology of polyaniline films

Journal of Applied Polymer Science, 2001

We report structure–property relationships of polyaniline emeraldine base (EB) films that were pr... more We report structure–property relationships of polyaniline emeraldine base (EB) films that were produced by combining different processing steps in various sequences. The effect of annealing and doping processes on the surface structure of the films was investigated by atomic force microscopy (AFM), and the corresponding changes to the chemical structure of the EB films were monitored by Fourier transform infrared spectroscopy. AFM results indicate that after doping polyaniline (EB) films with HCl, the root mean square (rms) roughness of the surface of EB film increased ∼ 46%. When the doped films were annealed at 180°C under a nitrogen atmosphere for 3 h, the rms roughness was essentially unchanged from that of the initial, undoped films. The electrical conductivity of the films also showed a significant dependence on the processing sequence. When the doped polyaniline (EB) films were annealed, no electrical conductivity was observed. When these films were redoped, only ∼ 6% of the initial conductivity could be recovered. In another processing sequence in which the polyaniline (EB) films were first annealed and then doped, the electrical conductivity was only ∼ 12% relative to the film that was doped immediately after being cast. From this work, a strategy to reduce the surface roughness of films made from electrically conducting polyaniline (EB) is proposed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3602–3610, 2001

Research paper thumbnail of Effect of Annealing on Structure and Morphology of Electroactive Polyaniline for Applications in Microelectronics

Research paper thumbnail of Prospects of manufacturing organic semiconductor-based integrated circuits

IEEE Transactions on Semiconductor Manufacturing, 2001

Page 1. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 14, NO. 3, AUGUST 2001 281 Prospec... more Page 1. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 14, NO. 3, AUGUST 2001 281 Prospects of Manufacturing Organic Semiconductor-Based Integrated CircuitsAnurag Lodha, Student Member, IEEE, and Rajendra Singh, Senior Member, IEEE ...

Research paper thumbnail of Effect of annealing on electrical conductivity and morphology of polyaniline films

Journal of Applied Polymer Science, 2001

We report structure–property relationships of polyaniline emeraldine base (EB) films that were pr... more We report structure–property relationships of polyaniline emeraldine base (EB) films that were produced by combining different processing steps in various sequences. The effect of annealing and doping processes on the surface structure of the films was investigated by atomic force microscopy (AFM), and the corresponding changes to the chemical structure of the EB films were monitored by Fourier transform infrared spectroscopy. AFM results indicate that after doping polyaniline (EB) films with HCl, the root mean square (rms) roughness of the surface of EB film increased ∼ 46%. When the doped films were annealed at 180°C under a nitrogen atmosphere for 3 h, the rms roughness was essentially unchanged from that of the initial, undoped films. The electrical conductivity of the films also showed a significant dependence on the processing sequence. When the doped polyaniline (EB) films were annealed, no electrical conductivity was observed. When these films were redoped, only ∼ 6% of the initial conductivity could be recovered. In another processing sequence in which the polyaniline (EB) films were first annealed and then doped, the electrical conductivity was only ∼ 12% relative to the film that was doped immediately after being cast. From this work, a strategy to reduce the surface roughness of films made from electrically conducting polyaniline (EB) is proposed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3602–3610, 2001

Research paper thumbnail of Effect of annealing on electrical conductivity and morphology of polyaniline films

Journal of Applied Polymer Science, 2001

We report structure–property relationships of polyaniline emeraldine base (EB) films that were pr... more We report structure–property relationships of polyaniline emeraldine base (EB) films that were produced by combining different processing steps in various sequences. The effect of annealing and doping processes on the surface structure of the films was investigated by atomic force microscopy (AFM), and the corresponding changes to the chemical structure of the EB films were monitored by Fourier transform infrared spectroscopy. AFM results indicate that after doping polyaniline (EB) films with HCl, the root mean square (rms) roughness of the surface of EB film increased ∼ 46%. When the doped films were annealed at 180°C under a nitrogen atmosphere for 3 h, the rms roughness was essentially unchanged from that of the initial, undoped films. The electrical conductivity of the films also showed a significant dependence on the processing sequence. When the doped polyaniline (EB) films were annealed, no electrical conductivity was observed. When these films were redoped, only ∼ 6% of the initial conductivity could be recovered. In another processing sequence in which the polyaniline (EB) films were first annealed and then doped, the electrical conductivity was only ∼ 12% relative to the film that was doped immediately after being cast. From this work, a strategy to reduce the surface roughness of films made from electrically conducting polyaniline (EB) is proposed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3602–3610, 2001