Arjan Hillebrand - Academia.edu (original) (raw)

Papers by Arjan Hillebrand

Research paper thumbnail of A three dimensional anatomical view of oscillatory resting-state activity and functional connectivity in Parkinson's disease related dementia: An MEG study using atlas-based beamforming

NeuroImage. Clinical, 2012

Parkinson's disease (PD) related dementia (PDD) develops in up to 80% of PD patients. The pre... more Parkinson's disease (PD) related dementia (PDD) develops in up to 80% of PD patients. The present study was performed to further unravel the underlying pathophysiological mechanisms by applying a new analysis approach that uses an atlas-based MEG beamformer to provide a detailed anatomical mapping of cortical rhythms and functional interactions. Importantly, we used the phase lag index (PLI) as a measure of functional connectivity to avoid any biases due to effects of volume conduction. MEG recordings were obtained in 13 PDD and 13 non-demented PD patients. Beamforming was used to estimate spectral power and PLI in delta, theta, alpha, beta and gamma frequency bands. Compared to PD patients, PDD patients had more delta and theta power in parieto-occipital and fronto-parietal areas, respectively. The PDD patients had less alpha and beta power in parieto-temporo-occipital and frontal areas, respectively. Compared to PD patients, PDD patients had lower mean PLI values in the delta ...

Research paper thumbnail of Cognition in MS correlates with resting-state oscillatory brain activity: An explorative MEG source-space study

NeuroImage. Clinical, 2013

Clinical and cognitive dysfunction in Multiple Sclerosis (MS) is insufficiently explained by stru... more Clinical and cognitive dysfunction in Multiple Sclerosis (MS) is insufficiently explained by structural damage as identified by traditional magnetic resonance imaging (MRI) of the brain, indicating the need for reliable functional measures in MS. We investigated whether altered resting-state oscillatory power could be related to clinical and cognitive dysfunction in MS. MEG recordings were acquired using a 151-channel whole-head MEG system from 21 relapsing remitting MS patients and 17 healthy age-, gender-, and education-matched controls, using an eyes-closed no-task condition. Relative spectral power was estimated for 78 regions of interest, using an atlas-based beamforming approach, for classical frequency bands; delta, theta, alpha1, alpha2, beta and gamma. These cortical power estimates were compared between groups by means of permutation analysis and correlated with clinical disability (Expanded Disability Status Scale: EDSS), cognitive performance and MRI measures of atrophy ...

Research paper thumbnail of A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex

NeuroImage, 2002

MagnetoEncephaloGraphy (MEG) relies on the detection of cortical current flow by measurement of t... more MagnetoEncephaloGraphy (MEG) relies on the detection of cortical current flow by measurement of the associated magnetic field outside the head. The amplitude of this magnetic field depends strongly on the depth of the electrical brain activity. Additionally, radially orientated sources are magnetically silent in a concentrically homogeneous volume conductor, giving rise to the anecdotal assumptions that MEG is insensitive to both deep and gyral sources. Utilising cortical surfaces extracted from Magnetic Resonance Images (MRIs) of two adult brains we constructed all possible single source elements and examined the proportion of active neocortex that is actually detectable with a whole-head MEG system. We identified those electrically active regions to which MEG is maximally sensitive by analytically computing the probability of detecting a source within a specified confidence volume. Our findings show that source depth, and not orientation, is the main factor that compromises the se...

Research paper thumbnail of Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing

Synthetic aperture magnetometry (SAM) is a nonlinear beamformer technique for producing 3D images... more Synthetic aperture magnetometry (SAM) is a nonlinear beamformer technique for producing 3D images of cortical activity from magnetoencephalography data. We have previously shown how SAM images can be spatially normalised and averaged to form a group image. In this paper we show how nonparametric permutation methods can be used to make robust statistical inference about group SAM data. Data from a biological motion direction discrimination experiment were analysed using both a nonparametric analysis toolbox (SnPM) and a conventional parametric approach utilising Gaussian field theory. In data from a group of six subjects, we were able to show robust group activation at the P Ͻ 0.05 (corrected) level using the nonparametric methods, while no significant clusters were found using the conventional parametric approach. Activation was found using SnPM in several regions of right occipital-temporal cortex, including the superior temporal sulcus, V5/MT, the fusiform gyrus, and the lateral occipital complex.

Research paper thumbnail of Beamformer reconstruction of correlated sources using a modified source model

This paper introduces a lead field formulation for use in beamformer analysis of MEG data. This '... more This paper introduces a lead field formulation for use in beamformer analysis of MEG data. This 'dual source beamformer' is a technique to image two temporally correlated sources using beamformer methodology. We show that while the standard, single source beamformer suppresses the reconstructed power of two spatially separate but temporally correlated sources, the dual source beamformer allows for their accurate reconstruction. The technique is proven to be accurate using simulations. We also show that it can be used to image accurately the auditory steady state response, which is correlated between the left and right auditory cortices. We suggest that this technique represents a useful way of locating correlated sources, particularly if a seed location can be defined a priori for one of the two sources. Such a priori information could be based on previous studies using similar paradigms, or from other functional neuroimaging techniques.

Research paper thumbnail of Assessing interactions of linear and nonlinear neuronal sources using MEG beamformers: a proof of concept

Objective: This study aimed to explore methods of assessing interactions between neuronal sources... more Objective: This study aimed to explore methods of assessing interactions between neuronal sources using MEG beamformers. However, beamformer methodology is based on the assumption of no linear long-term source interdependencies [VanVeen BD, vanDrongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 1997;44:867-80; Robinson SE, Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Recent advances in Biomagnetism. Sendai: Tohoku University Press; 1999. p. 302-5]. Although such long-term correlations are not efficient and should not be anticipated in a healthy brain [Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 2000;355:215-36], transient correlations seem to underlie functional cortical coordination [Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999;49-65; Rodriguez E, George N, Lachaux J, Martinerie J, Renault B, Varela F. Perception's shadow: long-distance synchronization of human brain activity. Nature 1999;397:430-3; Bressler SL, Kelso J. Cortical coordination dynamics and cognition. Trends Cogn Sci 2001;5:26-36].

Research paper thumbnail of Beamformer Analysis of MEG Data

International Review of Neurobiology, 2005

Research paper thumbnail of Changes in MEG resting-state networks are related to cognitive decline in type 1 diabetes mellitus patients

NeuroImage: Clinical, 2014

Objective: Integrity of resting-state functional brain networks (RSNs) is important for proper co... more Objective: Integrity of resting-state functional brain networks (RSNs) is important for proper cognitive functioning. In type 1 diabetes mellitus (T1DM) cognitive decrements are commonly observed, possibly due to alterations in RSNs, which may vary according to microvascular complication status. Thus, we tested the hypothesis that functional connectivity in RSNs differs according to clinical status and correlates with cognition in T1DM patients, using an unbiased approach with high spatio-temporal resolution functional network. Methods: Resting-state magnetoencephalographic (MEG) data for T1DM patients with (n = 42) and without (n = 41) microvascular complications and 33 healthy participants were recorded. MEG time-series at source level were reconstructed using a recently developed atlas-based beamformer. Functional connectivity within classical frequency bands, estimated by the phase lag index (PLI), was calculated within eight commonly found RSNs. Neuropsychological tests were used to assess cognitive performance, and the relation with RSNs was evaluated. Results: Significant differences in terms of RSN functional connectivity between the three groups were observed in the lower alpha band, in the default-mode (DMN), executive control (ECN) and sensorimotor (SMN) RSNs. T1DM patients with microvascular complications showed the weakest functional connectivity in these networks relative to the other groups. For DMN, functional connectivity was higher in patients without microangiopathy relative to controls (all p b 0.05). General cognitive performance for both patient groups was worse compared with healthy controls. Lower DMN alpha band functional connectivity correlated with poorer general cognitive ability in patients with microvascular complications. Discussion: Altered RSN functional connectivity was found in T1DM patients depending on clinical status. Lower DMN functional connectivity was related to poorer cognitive functioning. These results indicate that functional connectivity may play a key role in T1DM-related cognitive dysfunction.

Research paper thumbnail of Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts

To evaluate the viability of MEG source reconstruction in the presence of large interference due ... more To evaluate the viability of MEG source reconstruction in the presence of large interference due to orthodontic material. We recorded the magnetic fields following a simple hand movement and following electrical stimulation of the median nerve (somatosensory evoked field -SEF). These two tasks were performed twice, once with and once without artificial dental artefacts. Temporal Signal Space Separation (tSSS) was applied to spatially filter the data and source reconstruction was performed according to standard procedures for pre-surgical mapping of eloquent cortex, applying dipole fitting to the SEF data and beamforming to the hand movement data. Comparing the data with braces to the data without braces, the observed distances between the activations following hand movement in the two conditions were on average 6.4 and 4.5 mm for the left and right hand, respectively, whereas the dipole localisation errors for the SEF were 4.1 and 5.4 mm, respectively. Without tSSS it was generally not possible to obtain reliable dipole fit or beamforming results when wearing braces. We confirm that tSSS is a required and effective pre-processing step for data recorded with the Elekta-MEG system. Moreover, we have shown that even the presence of large interference from orthodontic material does not significantly alter the results from dipole localisation or beamformer analysis, provided the data are spatially filtered by tSSS. State-of-the-art signal processing techniques enable the use of MEG for pre-surgical evaluation in a much larger clinical population than previously thought possible.

Research paper thumbnail of Magnetoencephalogram

Research paper thumbnail of Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution

and sharing with colleagues.

Research paper thumbnail of The spatial relationship between event-related changes in cortical synchrony, and the haemodynamic response: an MEG-fMRI study

Research paper thumbnail of Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing

NeuroImage, 2003

Synthetic aperture magnetometry (SAM) is a nonlinear beamformer technique for producing 3D images... more Synthetic aperture magnetometry (SAM) is a nonlinear beamformer technique for producing 3D images of cortical activity from magnetoencephalography data. We have previously shown how SAM images can be spatially normalised and averaged to form a group image. In this paper we show how nonparametric permutation methods can be used to make robust statistical inference about group SAM data. Data from a biological motion direction discrimination experiment were analysed using both a nonparametric analysis toolbox (SnPM) and a conventional parametric approach utilising Gaussian field theory. In data from a group of six subjects, we were able to show robust group activation at the P Ͻ 0.05 (corrected) level using the nonparametric methods, while no significant clusters were found using the conventional parametric approach. Activation was found using SnPM in several regions of right occipital-temporal cortex, including the superior temporal sulcus, V5/MT, the fusiform gyrus, and the lateral occipital complex.

Research paper thumbnail of Hierarchical clustering in minimum spanning trees

Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015

The identification of clusters or communities in complex networks is a reappearing problem. The m... more The identification of clusters or communities in complex networks is a reappearing problem. The minimum spanning tree (MST), the tree connecting all nodes with minimum total weight, is regarded as an important transport backbone of the original weighted graph. We hypothesize that the clustering of the MST reveals insight in the hierarchical structure of weighted graphs. However, existing theories and algorithms have difficulties to define and identify clusters in trees. Here, we first define clustering in trees and then propose a tree agglomerative hierarchical clustering (TAHC) method for the detection of clusters in MSTs. We then demonstrate that the TAHC method can detect clusters in artificial trees, and also in MSTs of weighted social networks, for which the clusters are in agreement with the previously reported clusters of the original weighted networks. Our results therefore not only indicate that clusters can be found in MSTs, but also that the MSTs contain information about the underlying clusters of the original weighted network.

Research paper thumbnail of The re-organization of functional brain networks in pharmaco-resistant epileptic patients who respond to VNS

Neuroscience Letters, 2014

Vagal nerve stimulation (VNS) is a therapeutic add-on treatment for patients with pharmaco-resist... more Vagal nerve stimulation (VNS) is a therapeutic add-on treatment for patients with pharmaco-resistant epilepsy. The mechanism of action is still largely unknown. Previous studies have shown that brain network topology during the inter-ictal period in epileptic patients deviates from normal configuration. In the present paper, we investigate the relationship between clinical improvement induced by VNS and alterations in brain network topology. We hypothesize that, as a consequence of the VNS add-on treatment, functional brain network architecture shifts back toward a more efficient configuration in patients responding to VNS. Electroencephalographic (EEG) recordings from ten patients affected by pharmaco-resistant epilepsy were analyzed in the classical EEG frequency bands. The phase lag index (PLI) was used to estimate functional connectivity between EEG channels and the minimum spanning tree (MST) was computed in order to characterize VNS-induced alterations in network topology in a bias-free way. Our results revealed a clear network re-organization, in terms of MST modification, toward a more integrated architecture in patients responding to the VNS. In particular, the results show a significant interaction effect between benefit from VNS (responders/non-responders) and condition (pre/post VNS implantation) in the theta band. This finding suggests that the positive effect induced by VNS add-on treatment in epileptic patients is related to a clear network re-organization and that this network modification can reveal the long debated mechanism of action of VNS. Therefore, MST analysis could be useful in evaluating and monitoring the efficacy of VNS add-on treatment potentially in both epilepsy and psychiatric diseases.

Research paper thumbnail of Resting-state functional connectivity as a marker of disease progression in Parkinson's disease: A longitudinal MEG study

Neuroimage (Amst), 2013

The assessment of resting-state functional connectivity has become an important tool in studying ... more The assessment of resting-state functional connectivity has become an important tool in studying brain disease mechanisms. Here we use magnetoencephalography to longitudinally evaluate functional connectivity changes in relation to clinical measures of disease progression in Parkinson's disease (PD). Using a source-space based approach with detailed anatomical mapping, functional connectivity was assessed for temporal, prefrontal and high order sensory association areas known to show neuropathological changes in early clinical disease stages. At baseline, early stage, untreated PD patients (n = 12) had lower parahippocampal and temporal delta band connectivity and higher temporal alpha1 band connectivity compared to controls. Longitudinal analyses over a 4-year period in a larger patient group (n = 43) revealed decreases in alpha1 and alpha2 band connectivity for multiple seed regions that were associated with motor or cognitive deterioration. In the earliest clinical stages of PD, delta and alpha1 band resting-state functional connectivity is altered in temporal cortical regions. With disease progression, a reversal of the initial changes in alpha1 and additional decreases in alpha2 band connectivity evolving in a more widespread cortical pattern. These changes in functional connectivity appear to reflect clinically relevant phenomena and therefore hold promise as a marker of disease progression, with potential predictive value for clinical outcome.

Research paper thumbnail of Connectivity in MEG resting-state networks increases after resective surgery for low-grade glioma and correlates with improved cognitive performance

NeuroImage: Clinical, 2013

Purpose: Low-grade glioma (LGG) patients often have cognitive deficits. Several disease-and treat... more Purpose: Low-grade glioma (LGG) patients often have cognitive deficits. Several disease-and treatment related factors affect cognitive processing. Cognitive outcome of resective surgery is unpredictable, both for improvement and deterioration, especially for complex domains such as attention and executive functioning. MEG analysis of resting-state networks (RSNs) is a good candidate for presurgical prediction of cognitive outcome. In this study, we explore the relation between alterations in connectivity of RSNs and changes in cognitive processing after resective surgery, as a stepping stone to ultimately predict postsurgical cognitive outcome. Methods: Ten patients with LGG were included, who had no adjuvant therapy. MEG recording and neuropsychological assessment were obtained before and after resective surgery. MEG data were recorded during a no-task eyes-closed condition, and projected to the anatomical space of the AAL atlas. Alterations in functional connectivity, as characterized by the phase lag index (PLI), within the default mode network (DMN), executive control network (ECN), and left-and right-sided frontoparietal networks (FPN) were compared to cognitive changes. Results: Lower alpha band DMN connectivity was increased after surgery, and this increase was related to improved verbal memory functioning. Similarly, right FPN connectivity was increased after resection in the upper alpha band, which correlated with improved attention, working memory and executive functioning. Discussion: Increased alpha band RSN functional connectivity in MEG recordings correlates with improved cognitive outcome after resective surgery. The mechanisms resulting in functional connectivity alterations after resection remain to be elucidated. Importantly, our findings indicate that connectivity of MEG RSNs may be used for presurgical prediction of cognitive outcome in future studies.

Research paper thumbnail of Top-Down Modulation in Human Visual Cortex Predicts the Stability of a Perceptual Illusion

Journal of Neurophysiology, 2014

Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VA, Donner TH. Top-down modulatio... more Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VA, Donner TH. Top-down modulation in human visual cortex predicts the stability of a perceptual illusion.

Research paper thumbnail of Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia

PloS one, 2012

Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly dist... more Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG) provides direct measures of neuronal activity and has an excellent temporal resolution, offering a unique opportunity to study AVH pathophysiology. Twelve patients (10 paranoid schizophrenia, 2 psychosis not otherwise specified) indicated the presence of AVH by button-press while lying in a MEG scanner. As a control condition, patients performed a self-paced button-press task. AVH-state and non-AVH state were contrasted in a region-of-interest (ROI) approach. In addition, the two seconds before AVH onset were contrasted with the two seconds after AVH onset to elucidate a possible triggering mechanism. AVH correlated with a decrease in beta-band power in the left temporal cortex. A decrease in alpha-band power was observed in the right inferior ...

Research paper thumbnail of Optimising experimental design for MEG beamformer imaging

Neuroimage, 2008

In recent years, the use of beamformers for source localisation has significantly improved the sp... more In recent years, the use of beamformers for source localisation has significantly improved the spatial accuracy of magnetoencephalography. In this paper, we examine techniques by which to optimise experimental design, and ensure that the application of beamformers yields accurate results. We show that variation in the experimental duration, or variation in the bandwidth of a signal of interest, can significantly affect the accuracy of a beamformer reconstruction of source power. Specifically, power will usually be underestimated if covariance windows are made too short, or bandwidths too narrow. The accuracy of spatial localisation may also be reduced. We conclude that for optimum accuracy, experimenters should aim to collect as much data as possible, and use a bandwidth spanning the entire frequency distribution of the signal of interest. This minimises distortion to reconstructed source images, time courses and power estimation. In the case where experimental duration is short, an...

Research paper thumbnail of A three dimensional anatomical view of oscillatory resting-state activity and functional connectivity in Parkinson's disease related dementia: An MEG study using atlas-based beamforming

NeuroImage. Clinical, 2012

Parkinson's disease (PD) related dementia (PDD) develops in up to 80% of PD patients. The pre... more Parkinson's disease (PD) related dementia (PDD) develops in up to 80% of PD patients. The present study was performed to further unravel the underlying pathophysiological mechanisms by applying a new analysis approach that uses an atlas-based MEG beamformer to provide a detailed anatomical mapping of cortical rhythms and functional interactions. Importantly, we used the phase lag index (PLI) as a measure of functional connectivity to avoid any biases due to effects of volume conduction. MEG recordings were obtained in 13 PDD and 13 non-demented PD patients. Beamforming was used to estimate spectral power and PLI in delta, theta, alpha, beta and gamma frequency bands. Compared to PD patients, PDD patients had more delta and theta power in parieto-occipital and fronto-parietal areas, respectively. The PDD patients had less alpha and beta power in parieto-temporo-occipital and frontal areas, respectively. Compared to PD patients, PDD patients had lower mean PLI values in the delta ...

Research paper thumbnail of Cognition in MS correlates with resting-state oscillatory brain activity: An explorative MEG source-space study

NeuroImage. Clinical, 2013

Clinical and cognitive dysfunction in Multiple Sclerosis (MS) is insufficiently explained by stru... more Clinical and cognitive dysfunction in Multiple Sclerosis (MS) is insufficiently explained by structural damage as identified by traditional magnetic resonance imaging (MRI) of the brain, indicating the need for reliable functional measures in MS. We investigated whether altered resting-state oscillatory power could be related to clinical and cognitive dysfunction in MS. MEG recordings were acquired using a 151-channel whole-head MEG system from 21 relapsing remitting MS patients and 17 healthy age-, gender-, and education-matched controls, using an eyes-closed no-task condition. Relative spectral power was estimated for 78 regions of interest, using an atlas-based beamforming approach, for classical frequency bands; delta, theta, alpha1, alpha2, beta and gamma. These cortical power estimates were compared between groups by means of permutation analysis and correlated with clinical disability (Expanded Disability Status Scale: EDSS), cognitive performance and MRI measures of atrophy ...

Research paper thumbnail of A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex

NeuroImage, 2002

MagnetoEncephaloGraphy (MEG) relies on the detection of cortical current flow by measurement of t... more MagnetoEncephaloGraphy (MEG) relies on the detection of cortical current flow by measurement of the associated magnetic field outside the head. The amplitude of this magnetic field depends strongly on the depth of the electrical brain activity. Additionally, radially orientated sources are magnetically silent in a concentrically homogeneous volume conductor, giving rise to the anecdotal assumptions that MEG is insensitive to both deep and gyral sources. Utilising cortical surfaces extracted from Magnetic Resonance Images (MRIs) of two adult brains we constructed all possible single source elements and examined the proportion of active neocortex that is actually detectable with a whole-head MEG system. We identified those electrically active regions to which MEG is maximally sensitive by analytically computing the probability of detecting a source within a specified confidence volume. Our findings show that source depth, and not orientation, is the main factor that compromises the se...

Research paper thumbnail of Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing

Synthetic aperture magnetometry (SAM) is a nonlinear beamformer technique for producing 3D images... more Synthetic aperture magnetometry (SAM) is a nonlinear beamformer technique for producing 3D images of cortical activity from magnetoencephalography data. We have previously shown how SAM images can be spatially normalised and averaged to form a group image. In this paper we show how nonparametric permutation methods can be used to make robust statistical inference about group SAM data. Data from a biological motion direction discrimination experiment were analysed using both a nonparametric analysis toolbox (SnPM) and a conventional parametric approach utilising Gaussian field theory. In data from a group of six subjects, we were able to show robust group activation at the P Ͻ 0.05 (corrected) level using the nonparametric methods, while no significant clusters were found using the conventional parametric approach. Activation was found using SnPM in several regions of right occipital-temporal cortex, including the superior temporal sulcus, V5/MT, the fusiform gyrus, and the lateral occipital complex.

Research paper thumbnail of Beamformer reconstruction of correlated sources using a modified source model

This paper introduces a lead field formulation for use in beamformer analysis of MEG data. This '... more This paper introduces a lead field formulation for use in beamformer analysis of MEG data. This 'dual source beamformer' is a technique to image two temporally correlated sources using beamformer methodology. We show that while the standard, single source beamformer suppresses the reconstructed power of two spatially separate but temporally correlated sources, the dual source beamformer allows for their accurate reconstruction. The technique is proven to be accurate using simulations. We also show that it can be used to image accurately the auditory steady state response, which is correlated between the left and right auditory cortices. We suggest that this technique represents a useful way of locating correlated sources, particularly if a seed location can be defined a priori for one of the two sources. Such a priori information could be based on previous studies using similar paradigms, or from other functional neuroimaging techniques.

Research paper thumbnail of Assessing interactions of linear and nonlinear neuronal sources using MEG beamformers: a proof of concept

Objective: This study aimed to explore methods of assessing interactions between neuronal sources... more Objective: This study aimed to explore methods of assessing interactions between neuronal sources using MEG beamformers. However, beamformer methodology is based on the assumption of no linear long-term source interdependencies [VanVeen BD, vanDrongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 1997;44:867-80; Robinson SE, Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Recent advances in Biomagnetism. Sendai: Tohoku University Press; 1999. p. 302-5]. Although such long-term correlations are not efficient and should not be anticipated in a healthy brain [Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 2000;355:215-36], transient correlations seem to underlie functional cortical coordination [Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999;49-65; Rodriguez E, George N, Lachaux J, Martinerie J, Renault B, Varela F. Perception's shadow: long-distance synchronization of human brain activity. Nature 1999;397:430-3; Bressler SL, Kelso J. Cortical coordination dynamics and cognition. Trends Cogn Sci 2001;5:26-36].

Research paper thumbnail of Beamformer Analysis of MEG Data

International Review of Neurobiology, 2005

Research paper thumbnail of Changes in MEG resting-state networks are related to cognitive decline in type 1 diabetes mellitus patients

NeuroImage: Clinical, 2014

Objective: Integrity of resting-state functional brain networks (RSNs) is important for proper co... more Objective: Integrity of resting-state functional brain networks (RSNs) is important for proper cognitive functioning. In type 1 diabetes mellitus (T1DM) cognitive decrements are commonly observed, possibly due to alterations in RSNs, which may vary according to microvascular complication status. Thus, we tested the hypothesis that functional connectivity in RSNs differs according to clinical status and correlates with cognition in T1DM patients, using an unbiased approach with high spatio-temporal resolution functional network. Methods: Resting-state magnetoencephalographic (MEG) data for T1DM patients with (n = 42) and without (n = 41) microvascular complications and 33 healthy participants were recorded. MEG time-series at source level were reconstructed using a recently developed atlas-based beamformer. Functional connectivity within classical frequency bands, estimated by the phase lag index (PLI), was calculated within eight commonly found RSNs. Neuropsychological tests were used to assess cognitive performance, and the relation with RSNs was evaluated. Results: Significant differences in terms of RSN functional connectivity between the three groups were observed in the lower alpha band, in the default-mode (DMN), executive control (ECN) and sensorimotor (SMN) RSNs. T1DM patients with microvascular complications showed the weakest functional connectivity in these networks relative to the other groups. For DMN, functional connectivity was higher in patients without microangiopathy relative to controls (all p b 0.05). General cognitive performance for both patient groups was worse compared with healthy controls. Lower DMN alpha band functional connectivity correlated with poorer general cognitive ability in patients with microvascular complications. Discussion: Altered RSN functional connectivity was found in T1DM patients depending on clinical status. Lower DMN functional connectivity was related to poorer cognitive functioning. These results indicate that functional connectivity may play a key role in T1DM-related cognitive dysfunction.

Research paper thumbnail of Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts

To evaluate the viability of MEG source reconstruction in the presence of large interference due ... more To evaluate the viability of MEG source reconstruction in the presence of large interference due to orthodontic material. We recorded the magnetic fields following a simple hand movement and following electrical stimulation of the median nerve (somatosensory evoked field -SEF). These two tasks were performed twice, once with and once without artificial dental artefacts. Temporal Signal Space Separation (tSSS) was applied to spatially filter the data and source reconstruction was performed according to standard procedures for pre-surgical mapping of eloquent cortex, applying dipole fitting to the SEF data and beamforming to the hand movement data. Comparing the data with braces to the data without braces, the observed distances between the activations following hand movement in the two conditions were on average 6.4 and 4.5 mm for the left and right hand, respectively, whereas the dipole localisation errors for the SEF were 4.1 and 5.4 mm, respectively. Without tSSS it was generally not possible to obtain reliable dipole fit or beamforming results when wearing braces. We confirm that tSSS is a required and effective pre-processing step for data recorded with the Elekta-MEG system. Moreover, we have shown that even the presence of large interference from orthodontic material does not significantly alter the results from dipole localisation or beamformer analysis, provided the data are spatially filtered by tSSS. State-of-the-art signal processing techniques enable the use of MEG for pre-surgical evaluation in a much larger clinical population than previously thought possible.

Research paper thumbnail of Magnetoencephalogram

Research paper thumbnail of Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution

and sharing with colleagues.

Research paper thumbnail of The spatial relationship between event-related changes in cortical synchrony, and the haemodynamic response: an MEG-fMRI study

Research paper thumbnail of Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing

NeuroImage, 2003

Synthetic aperture magnetometry (SAM) is a nonlinear beamformer technique for producing 3D images... more Synthetic aperture magnetometry (SAM) is a nonlinear beamformer technique for producing 3D images of cortical activity from magnetoencephalography data. We have previously shown how SAM images can be spatially normalised and averaged to form a group image. In this paper we show how nonparametric permutation methods can be used to make robust statistical inference about group SAM data. Data from a biological motion direction discrimination experiment were analysed using both a nonparametric analysis toolbox (SnPM) and a conventional parametric approach utilising Gaussian field theory. In data from a group of six subjects, we were able to show robust group activation at the P Ͻ 0.05 (corrected) level using the nonparametric methods, while no significant clusters were found using the conventional parametric approach. Activation was found using SnPM in several regions of right occipital-temporal cortex, including the superior temporal sulcus, V5/MT, the fusiform gyrus, and the lateral occipital complex.

Research paper thumbnail of Hierarchical clustering in minimum spanning trees

Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015

The identification of clusters or communities in complex networks is a reappearing problem. The m... more The identification of clusters or communities in complex networks is a reappearing problem. The minimum spanning tree (MST), the tree connecting all nodes with minimum total weight, is regarded as an important transport backbone of the original weighted graph. We hypothesize that the clustering of the MST reveals insight in the hierarchical structure of weighted graphs. However, existing theories and algorithms have difficulties to define and identify clusters in trees. Here, we first define clustering in trees and then propose a tree agglomerative hierarchical clustering (TAHC) method for the detection of clusters in MSTs. We then demonstrate that the TAHC method can detect clusters in artificial trees, and also in MSTs of weighted social networks, for which the clusters are in agreement with the previously reported clusters of the original weighted networks. Our results therefore not only indicate that clusters can be found in MSTs, but also that the MSTs contain information about the underlying clusters of the original weighted network.

Research paper thumbnail of The re-organization of functional brain networks in pharmaco-resistant epileptic patients who respond to VNS

Neuroscience Letters, 2014

Vagal nerve stimulation (VNS) is a therapeutic add-on treatment for patients with pharmaco-resist... more Vagal nerve stimulation (VNS) is a therapeutic add-on treatment for patients with pharmaco-resistant epilepsy. The mechanism of action is still largely unknown. Previous studies have shown that brain network topology during the inter-ictal period in epileptic patients deviates from normal configuration. In the present paper, we investigate the relationship between clinical improvement induced by VNS and alterations in brain network topology. We hypothesize that, as a consequence of the VNS add-on treatment, functional brain network architecture shifts back toward a more efficient configuration in patients responding to VNS. Electroencephalographic (EEG) recordings from ten patients affected by pharmaco-resistant epilepsy were analyzed in the classical EEG frequency bands. The phase lag index (PLI) was used to estimate functional connectivity between EEG channels and the minimum spanning tree (MST) was computed in order to characterize VNS-induced alterations in network topology in a bias-free way. Our results revealed a clear network re-organization, in terms of MST modification, toward a more integrated architecture in patients responding to the VNS. In particular, the results show a significant interaction effect between benefit from VNS (responders/non-responders) and condition (pre/post VNS implantation) in the theta band. This finding suggests that the positive effect induced by VNS add-on treatment in epileptic patients is related to a clear network re-organization and that this network modification can reveal the long debated mechanism of action of VNS. Therefore, MST analysis could be useful in evaluating and monitoring the efficacy of VNS add-on treatment potentially in both epilepsy and psychiatric diseases.

Research paper thumbnail of Resting-state functional connectivity as a marker of disease progression in Parkinson's disease: A longitudinal MEG study

Neuroimage (Amst), 2013

The assessment of resting-state functional connectivity has become an important tool in studying ... more The assessment of resting-state functional connectivity has become an important tool in studying brain disease mechanisms. Here we use magnetoencephalography to longitudinally evaluate functional connectivity changes in relation to clinical measures of disease progression in Parkinson's disease (PD). Using a source-space based approach with detailed anatomical mapping, functional connectivity was assessed for temporal, prefrontal and high order sensory association areas known to show neuropathological changes in early clinical disease stages. At baseline, early stage, untreated PD patients (n = 12) had lower parahippocampal and temporal delta band connectivity and higher temporal alpha1 band connectivity compared to controls. Longitudinal analyses over a 4-year period in a larger patient group (n = 43) revealed decreases in alpha1 and alpha2 band connectivity for multiple seed regions that were associated with motor or cognitive deterioration. In the earliest clinical stages of PD, delta and alpha1 band resting-state functional connectivity is altered in temporal cortical regions. With disease progression, a reversal of the initial changes in alpha1 and additional decreases in alpha2 band connectivity evolving in a more widespread cortical pattern. These changes in functional connectivity appear to reflect clinically relevant phenomena and therefore hold promise as a marker of disease progression, with potential predictive value for clinical outcome.

Research paper thumbnail of Connectivity in MEG resting-state networks increases after resective surgery for low-grade glioma and correlates with improved cognitive performance

NeuroImage: Clinical, 2013

Purpose: Low-grade glioma (LGG) patients often have cognitive deficits. Several disease-and treat... more Purpose: Low-grade glioma (LGG) patients often have cognitive deficits. Several disease-and treatment related factors affect cognitive processing. Cognitive outcome of resective surgery is unpredictable, both for improvement and deterioration, especially for complex domains such as attention and executive functioning. MEG analysis of resting-state networks (RSNs) is a good candidate for presurgical prediction of cognitive outcome. In this study, we explore the relation between alterations in connectivity of RSNs and changes in cognitive processing after resective surgery, as a stepping stone to ultimately predict postsurgical cognitive outcome. Methods: Ten patients with LGG were included, who had no adjuvant therapy. MEG recording and neuropsychological assessment were obtained before and after resective surgery. MEG data were recorded during a no-task eyes-closed condition, and projected to the anatomical space of the AAL atlas. Alterations in functional connectivity, as characterized by the phase lag index (PLI), within the default mode network (DMN), executive control network (ECN), and left-and right-sided frontoparietal networks (FPN) were compared to cognitive changes. Results: Lower alpha band DMN connectivity was increased after surgery, and this increase was related to improved verbal memory functioning. Similarly, right FPN connectivity was increased after resection in the upper alpha band, which correlated with improved attention, working memory and executive functioning. Discussion: Increased alpha band RSN functional connectivity in MEG recordings correlates with improved cognitive outcome after resective surgery. The mechanisms resulting in functional connectivity alterations after resection remain to be elucidated. Importantly, our findings indicate that connectivity of MEG RSNs may be used for presurgical prediction of cognitive outcome in future studies.

Research paper thumbnail of Top-Down Modulation in Human Visual Cortex Predicts the Stability of a Perceptual Illusion

Journal of Neurophysiology, 2014

Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VA, Donner TH. Top-down modulatio... more Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VA, Donner TH. Top-down modulation in human visual cortex predicts the stability of a perceptual illusion.

Research paper thumbnail of Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia

PloS one, 2012

Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly dist... more Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG) provides direct measures of neuronal activity and has an excellent temporal resolution, offering a unique opportunity to study AVH pathophysiology. Twelve patients (10 paranoid schizophrenia, 2 psychosis not otherwise specified) indicated the presence of AVH by button-press while lying in a MEG scanner. As a control condition, patients performed a self-paced button-press task. AVH-state and non-AVH state were contrasted in a region-of-interest (ROI) approach. In addition, the two seconds before AVH onset were contrasted with the two seconds after AVH onset to elucidate a possible triggering mechanism. AVH correlated with a decrease in beta-band power in the left temporal cortex. A decrease in alpha-band power was observed in the right inferior ...

Research paper thumbnail of Optimising experimental design for MEG beamformer imaging

Neuroimage, 2008

In recent years, the use of beamformers for source localisation has significantly improved the sp... more In recent years, the use of beamformers for source localisation has significantly improved the spatial accuracy of magnetoencephalography. In this paper, we examine techniques by which to optimise experimental design, and ensure that the application of beamformers yields accurate results. We show that variation in the experimental duration, or variation in the bandwidth of a signal of interest, can significantly affect the accuracy of a beamformer reconstruction of source power. Specifically, power will usually be underestimated if covariance windows are made too short, or bandwidths too narrow. The accuracy of spatial localisation may also be reduced. We conclude that for optimum accuracy, experimenters should aim to collect as much data as possible, and use a bandwidth spanning the entire frequency distribution of the signal of interest. This minimises distortion to reconstructed source images, time courses and power estimation. In the case where experimental duration is short, an...