Aubert Dominique - Academia.edu (original) (raw)
Uploads
Papers by Aubert Dominique
Environmental Geochemistry and Health, 2014
Environmental Geochemistry and Health, 2014
In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the c... more In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77 %), they do not reflect severe enrichment (EFs \4). Most particles originate from the Rhone River. This has been confirmed by two different tracing procedures using rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deepsea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.
Chemical Geology, Jan 1, 2000
This paper determines the weathering and atmospheric contributions of Ca in surface water from a ... more This paper determines the weathering and atmospheric contributions of Ca in surface water from a small spruce forested silicate catchment (N–E France) receiving acid atmospheric inputs. The bedrock is a granite with K-feldspar and albite as dominant phases. The calcium content in plagioclase is low and the Ca/Na ratio in surface water is high, reflecting other sources of calcium from those expected from the weathering of major mineral phases. The biotite content is low. Only traces of apatite were detected while no calcite was found in spite of a major hydrothermal event having affected the granite. The strontium isotopic ratio 87Sr/86Sr and Sr content was used as a tracer of weathering and was determined in minerals and bulk bedrock, open field precipitation, throughfall, soil solution, spring and stream water. The Sr isotopic ratio of the reacting weathering end-member was predicted by simulating the alteration of the granite minerals by incorporating strontium into the water–rock interaction kinetic code KINDIS. In the early stages of water–rock interaction, K-feldspar and biotite strongly influence the isotopic composition of the weathering solution whereas, the Na-rich plagioclase appears to be the main long-term reactive weathering end-member. Approximately 50% of dissolved Sr in streamwater are atmospherically derived. The 87Sr/86Sr ratios of exchangeable Sr in the fine fraction at 1-m depth from a soil profile indicate that the amount of exchangeable Sr seems essentially controlled by atmospheric inputs. The exception is the deep saprolite where weathering processes could supply the Sr (and Ca). Na-Plagioclase weathering obviously control the chemistry and the isotopic composition of surface waters. The weathering of trace mineral plays a secondary role, the exception is for apatite when plagioclase is absent. Our hydrochemical, mineralogical and isotopic investigations show that a major part of the strong Ca losses detected in catchment hydrochemical budgets that result from the neutralization of acid precipitation has an atmospheric origin. Consequently, in the long term, in such areas, the availability of such an exchangeable base cation might be strongly limited and surface waters consequently acidified.
Geochimica Et Cosmochimica Acta, Jan 1, 2001
Very few studies deal with REE (rare earth element) mobility within the system soil–soil solution... more Very few studies deal with REE (rare earth element) mobility within the system soil–soil solution–streamwater. In this article, we try to characterize the fractionation and the migration of the REE in a granite-derived soil system located in a small catchment of the Vosges mountains. ICP-MS and TIMS measurements were performed on both solid samples (“fresh” granite, soil, and suspended load of the stream) and waters (soil solutions, springwater, and streamwater) to determine their respective REE concentrations and Sr and Nd isotopic compositions. The PAAS-normalized REE pattern of the bedrock is characterized by a strong depletion in HREE (heavy REE) and a negative Eu anomaly (0.46). Similarly, the granite-normalized REE distribution patterns of the soil samples show HREE depletions that become more important with decreasing depth. The correlative behavior between P2O5, Th, and REE with depth indicates that, besides apatite, other phosphate minerals such as monazite are the most important phases controlling the Th and REE budget in the soil profile. On the other hand, at greater depth, zircon seems to be another important mineral phase controlling especially the HREE enrichment as shown by the positive relationship between Zr content and the Yb/Ho ratio. Different grain size fractions show similar REE distribution patterns and are only weakly fractionated, compared with bulk soil sample. However, the finest fraction (0–20 μm) is more enriched in Sr and REE, suggesting a stronger concentration of REE-carrying minerals in this fraction. The suspended and dissolved load of the stream show as a whole an enrichment in HREE if compared with the granite or with the different soil samples. However, compared with the uppermost soil samples, the suspended load is significantly more enriched in HREE. Its REE distribution pattern is more similar to that of the finest fraction of the deeper soil sample and to the “fresh” granite. Thus, most probably the REE of the suspended load originated from a source with REE characteristics found in the deep soil horizons. This source might have been situated in the uppermost soil profile, which is actually REE depleted. The weathering process can be compared with a leaching experiment where the waters correspond to the leachate and the soil to the residual phase of the granite. The Sr isotope data indicate that the suspended load originates from the finest soil fraction. The Sr and Nd isotopic data of the suspended load suggest that it contains up to 3% Sr and Nd from apatite and up to 97% from feldspar. Most of the Sr and Nd in the waters originate from apatite leaching or dissolution.
Environmental Geochemistry and Health, 2014
Environmental Geochemistry and Health, 2014
In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the c... more In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77 %), they do not reflect severe enrichment (EFs \4). Most particles originate from the Rhone River. This has been confirmed by two different tracing procedures using rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deepsea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.
Chemical Geology, Jan 1, 2000
This paper determines the weathering and atmospheric contributions of Ca in surface water from a ... more This paper determines the weathering and atmospheric contributions of Ca in surface water from a small spruce forested silicate catchment (N–E France) receiving acid atmospheric inputs. The bedrock is a granite with K-feldspar and albite as dominant phases. The calcium content in plagioclase is low and the Ca/Na ratio in surface water is high, reflecting other sources of calcium from those expected from the weathering of major mineral phases. The biotite content is low. Only traces of apatite were detected while no calcite was found in spite of a major hydrothermal event having affected the granite. The strontium isotopic ratio 87Sr/86Sr and Sr content was used as a tracer of weathering and was determined in minerals and bulk bedrock, open field precipitation, throughfall, soil solution, spring and stream water. The Sr isotopic ratio of the reacting weathering end-member was predicted by simulating the alteration of the granite minerals by incorporating strontium into the water–rock interaction kinetic code KINDIS. In the early stages of water–rock interaction, K-feldspar and biotite strongly influence the isotopic composition of the weathering solution whereas, the Na-rich plagioclase appears to be the main long-term reactive weathering end-member. Approximately 50% of dissolved Sr in streamwater are atmospherically derived. The 87Sr/86Sr ratios of exchangeable Sr in the fine fraction at 1-m depth from a soil profile indicate that the amount of exchangeable Sr seems essentially controlled by atmospheric inputs. The exception is the deep saprolite where weathering processes could supply the Sr (and Ca). Na-Plagioclase weathering obviously control the chemistry and the isotopic composition of surface waters. The weathering of trace mineral plays a secondary role, the exception is for apatite when plagioclase is absent. Our hydrochemical, mineralogical and isotopic investigations show that a major part of the strong Ca losses detected in catchment hydrochemical budgets that result from the neutralization of acid precipitation has an atmospheric origin. Consequently, in the long term, in such areas, the availability of such an exchangeable base cation might be strongly limited and surface waters consequently acidified.
Geochimica Et Cosmochimica Acta, Jan 1, 2001
Very few studies deal with REE (rare earth element) mobility within the system soil–soil solution... more Very few studies deal with REE (rare earth element) mobility within the system soil–soil solution–streamwater. In this article, we try to characterize the fractionation and the migration of the REE in a granite-derived soil system located in a small catchment of the Vosges mountains. ICP-MS and TIMS measurements were performed on both solid samples (“fresh” granite, soil, and suspended load of the stream) and waters (soil solutions, springwater, and streamwater) to determine their respective REE concentrations and Sr and Nd isotopic compositions. The PAAS-normalized REE pattern of the bedrock is characterized by a strong depletion in HREE (heavy REE) and a negative Eu anomaly (0.46). Similarly, the granite-normalized REE distribution patterns of the soil samples show HREE depletions that become more important with decreasing depth. The correlative behavior between P2O5, Th, and REE with depth indicates that, besides apatite, other phosphate minerals such as monazite are the most important phases controlling the Th and REE budget in the soil profile. On the other hand, at greater depth, zircon seems to be another important mineral phase controlling especially the HREE enrichment as shown by the positive relationship between Zr content and the Yb/Ho ratio. Different grain size fractions show similar REE distribution patterns and are only weakly fractionated, compared with bulk soil sample. However, the finest fraction (0–20 μm) is more enriched in Sr and REE, suggesting a stronger concentration of REE-carrying minerals in this fraction. The suspended and dissolved load of the stream show as a whole an enrichment in HREE if compared with the granite or with the different soil samples. However, compared with the uppermost soil samples, the suspended load is significantly more enriched in HREE. Its REE distribution pattern is more similar to that of the finest fraction of the deeper soil sample and to the “fresh” granite. Thus, most probably the REE of the suspended load originated from a source with REE characteristics found in the deep soil horizons. This source might have been situated in the uppermost soil profile, which is actually REE depleted. The weathering process can be compared with a leaching experiment where the waters correspond to the leachate and the soil to the residual phase of the granite. The Sr isotope data indicate that the suspended load originates from the finest soil fraction. The Sr and Nd isotopic data of the suspended load suggest that it contains up to 3% Sr and Nd from apatite and up to 97% from feldspar. Most of the Sr and Nd in the waters originate from apatite leaching or dissolution.