Bérénice Oger - Academia.edu (original) (raw)

Papers by Bérénice Oger

Research paper thumbnail of Hypertree and semi-pointed partitions

HAL (Le Centre pour la Communication Scientifique Directe), Nov 21, 2014

Cette thèse est consacrée à l'étude combinatoire, algébrique et homologique des hyperarbres et de... more Cette thèse est consacrée à l'étude combinatoire, algébrique et homologique des hyperarbres et des partitions semi-pointées. Nous étudions plus précisément des structures algébriques et homologiques construites à partir des hyperarbres, puis des partitions semi-pointées, qui apparaissent naturellement au cours de notre étude. Après un bref rappel des notions utilisées, nous utilisons la théorie des espèces de structure introduite par A. Joyal afin de déterminer l'action du groupe symétrique sur l'homologie du poset des hyperarbres, connu aussi sous le nom de poset de Whitehead. Cette action s'identifie à l'action du groupe symétrique liée à la structure anti-cyclique de l'opérade PreLie. Nous raffinons ensuite nos calculs sur une graduation de l'homologie, appelée homologie de Whitney. Lors de cette étude interviennent des formules semblant décrire des hyperarbres décorés par des espèces. Nous définissons la notion d'hyperarbre aux arêtes décorées par une espèce avant d'établir des équations fonctionnelles vérifiées par ces hyperarbres. Ces hyperarbres décorés peuvent être décrits comme des cas particuliers d'arborescence R-enrichie. Une bijection des hyperarbres décorés avec des arbres en boîtes et des partitions dont les parts sont décorées permet d'obtenir une formule close pour leur cardinal, à l'aide d'un codage de Prüfer. Certains exemples pertinents reliés à des objets connus sont exhibés. Nous généralisons ensuite la décoration des hyperarbres en décorant à la fois les arêtes et le voisinage des sommets de l'hyperarbre, ce qui permet d'obtenir une interprétation combinatoire de l'homologie de Whitney du poset des hyperarbres en terme d'hyperarbres bidécorés. Nous adaptons ensuite les méthodes de calcul de caractères sur les algèbres de Hopf d'incidence, introduites par W. Schmitt dans le cas de familles de posets bornés, à des familles de posets non bornés vérifiant certaines propriétés. Cette adaptation repose sur l'introduction d'une bigèbre formée sur les posets dont nous relions le coproduit au coproduit sur l'algèbre de Hopf d'incidence obtenue en bornant les posets par l'ajout d'un maximum. Nous appliquons ensuite cette adaptation aux posets des hyperarbres. Nous donnons une formule explicite pour le coproduit de la bigèbre associée, qui fait intervenir le cardinal de l'ensemble des hyperarbres dont la taille des arêtes et la valence des sommets sont fixées. Enfin, une sorte d'hyperarbre décoré, appelée hyperarbre aux arêtes pointées, peut être à son tour munie d'un ordre partiel. Nous montrons que ces posets sont Cohen-Macaulay avant de calculer la dimension de l'unique groupe d'homologie non nulle. L'étude de ces posets fait apparaître une généralisation des posets des partitions et des posets des partitions pointées : les poset des partitions semi-pointées. Nous montrons que ces posets sont aussi Cohen-Macaulay, avant de déterminer à l'aide de la théorie des espèces une formule close pour la dimension de l'unique groupe d'homologie non trivial de ces posets.

Research paper thumbnail of Cellular diagonals of permutahedra

2.1. Partition forests 2.2. Möbius polynomial 2.3. Rainbow forests 2.4. Enumeration of vertices o... more 2.1. Partition forests 2.2. Möbius polynomial 2.3. Rainbow forests 2.4. Enumeration of vertices of B ℓ n 2.5. Enumeration of regions and bounded regions of B ℓ n 3. Face poset and combinatorial description of B ℓ n (a) 3.1. Ordered partition forests 3.2. From partition forests to ordered partition forests 3.3. A criterion for ordered partition forests Part II. Diagonals of permutahedra 4. Cellular diagonals 4.1. Cellular diagonals for polytopes 4.2. Cellular diagonals for the permutahedra 4.3. Enumerative results on cellular diagonals of the permutahedra 5. Operadic diagonals 5.1. The LA and SU diagonals 5.2. The operadic property 5.3. Isomorphisms between operadic diagonals 5.4. Facets of operadic diagonals 5.5. Vertices of operadic diagonals 5.6. Relation to the facial weak order 6. Shift lattices 6.1. Topological enhancement of the original SU diagonal 6.2. Shifts under the face poset isomorphism 6.3. Shift lattices 6.4. Cubical description 6.5. Matrix description Part III. Higher algebraic structures 7. Higher tensor products 7.1. Topological operadic structures 7.2. Relating operadic structures 7.3. Tensor products References

Research paper thumbnail of Tridendriform Algebras on Hypergraph Polytopes

HAL (Le Centre pour la Communication Scientifique Directe), Dec 13, 2022

We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the ... more We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the shuffle product on the faces of associahedra and permutohedra, to other families of hypergraph polytopes (or nestohedra), including simplices, hypercubes and some new families. We also extend the shuffle product to take more than two arguments, and define accordingly a new algebraic structure, that we call polydendriform, from which the original tridendriform equations can be crisply synthesized.

Research paper thumbnail of Non-ambiguous trees: new results and generalisation

arXiv (Cornell University), Nov 30, 2015

We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a... more We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differential equation whose solution can be described combinatorially. This yield a new formula for the number of NATs. We also obtain q-versions of our formula. And we generalize NATs to higher dimension. Résumé. Nous introduisons une nouvelle définition des arbres non ambigus (NATs) en terme d'arbres binaireś etiquetés. Nous en déduisons uneéquation différentielle, dont les solutions peuventêtre décrites de manière combinatoire. Ceci conduità une nouvelle formule pour le nombre de NATs. Nous démontrons aussi des q-versions des formules obtenues. Enfin, nous généralisons la notion de NAT en dimension supérieure.

Research paper thumbnail of Semi-pointed partition posets and Species

arXiv (Cornell University), Jun 3, 2015

We define semi-pointed partition posets, which are a generalisation of partition posets and show ... more We define semi-pointed partition posets, which are a generalisation of partition posets and show that they are Cohen-Macaulay. We then use multichains to compute the dimension and the character for the action of the symmetric groups on their homology. We finally study the associated incidence Hopf algebra, which is similar to the Faà di Bruno Hopf algebra.

Research paper thumbnail of Non-ambiguous trees: new results and generalisation (Full version)

arXiv (Cornell University), Mar 12, 2021

We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a... more We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differential equation whose solution can be described combinatorially. This yields a new formula for the number of NATs. We also obtain q-versions of our formula. We finally generalise NATs to higher dimension.

Research paper thumbnail of Non-ambiguous trees: New results and generalisation

European Journal of Combinatorics, Jun 1, 2021

We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a... more We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differential equation whose solution can be described combinatorially. This yields a new formula for the number of NATs. We also obtain q-versions of our formula. We finally generalise NATs to higher dimension.

Research paper thumbnail of Incidence Hopf algebra of the hypertree posets

HAL (Le Centre pour la Communication Scientifique Directe), 2015

INCIDENCE HOPF ALGEBRA OF THE HYPERTREE POSETS fÉÉxsgi hivgysEyqi Abstract. e dpt the omputtion o... more INCIDENCE HOPF ALGEBRA OF THE HYPERTREE POSETS fÉÉxsgi hivgysEyqi Abstract. e dpt the omputtion of hrters on inidene ropf lgers inE trodued y hmitt in the IWWHs for fmilies of ounded posets to fmily mixing ounded nd unounded (nite posetsF his omputtion relies on the introdution of n uxiliry ilgerX the oprodut in this ilger enles us to ompute the onE volution of some hrters on the inidene ropf lgerF efter estlishing generl result on the link etween the ilger nd the inidene ropf lgerD we pply it to the fmily of hypertree posets nd prtition posetsF his link for hypertree posets enles us to reover the wöius numers of these posets due to the oprodut in the ssoited ilgerF his oprodut is omputed using the numer of hypertrees with (xed vleny set nd (xed edge sizes setF Contents Coproduct in the bialgebra 15 6. Computation of the Möbius number of augmented hypertree posets 18 References 21

Research paper thumbnail of Non-ambiguous trees: new results ans generalizations

Le Centre pour la Communication Scientifique Directe - HAL - Université Toulouse - Jean Jaurès, 2019

Research paper thumbnail of Polydendriform structure on faces of hypergraph polytopes

We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the ... more We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the shuffle product on the faces of associahedra and permutohedra, to other families of nestohedra, including simplices, hypercubes and yet other less known families. We also extend the shuffle product to take more than two arguments, and define accordingly a new algebraic structure, that we call \emph{polydendriform}, from which the original tridendriform equations can be crisply synthesised.

Research paper thumbnail of Confluence laws and Hopf-Borel type theorem for operads

arXiv: Combinatorics, 2019

In 2008, Loday shed light on the existence of Hopf-Borel theorems for operads. Using the vocabula... more In 2008, Loday shed light on the existence of Hopf-Borel theorems for operads. Using the vocabulary of category theory, Livernet, Mesablishvili and Wisbauer extended such theorems to monads. In both cases, the reasoning was to start from a mixed distributive law and then to prove that it induces an isomorphism of species to finally get a rigidity theorem. Our reasoning goes here backward: we prove that from an isomorphism of species one can get what we called a confluence law, which generalises mixed distributive laws, and that it is enough to obtain a rigidity theorem. This enables us to show that for any operads P and Q having the same underlying S-module, there exists a confluence law α such that any conilpotent P coQ-bialgebra satisfying α is free and cofree over its primitive elements. Our reasoning permits us to generate many new examples, while recovering the known ones by considering dual relations.

Research paper thumbnail of An operad is never free as a pre-Lie algebra

arXiv: Rings and Algebras, 2017

An operad is naturally endowed with a pre-Lie structure. We prove that as a pre-Lie algebra an op... more An operad is naturally endowed with a pre-Lie structure. We prove that as a pre-Lie algebra an operad is not free. The proof holds on defining a non-vanishing linear operation in the pre-Lie algebra which is zero in any operad.

Research paper thumbnail of Hypertrees and semi-pointed Partitions : combinatorial, algebraic and homological Aspects

Cette thèse est consacrée à l’étude combinatoire, algébrique et homologique des hyperarbres et de... more Cette thèse est consacrée à l’étude combinatoire, algébrique et homologique des hyperarbres et des partitions semi-pointées. Nous étudions plus précisément des structures algébriques et homologiques construites à partir des hyperarbres, puis des partitions semi-pointées.Après un bref rappel des notions utilisées, nous utilisons la théorie des espèces de structure afin de déterminer l’action du groupe symétrique sur l’homologie du poset des hyperarbres. Cette action s’identifie à l’action du groupe symétrique liée à la structure anti-cyclique de l’opérade PreLie. Nous raffinons ensuite nos calculs sur une graduation de l’homologie, appelée homologie de Whitney. Cette étude motive l'introduction de la notion d’hyperarbre aux arêtes décorées par une espèce. Une bijection des hyperarbres décorés avec des arbres en boîtes et des partitions décorées permet d’obtenir une formule close pour leur cardinal, à l’aide d’un codage de Prüfer. Nous adaptons ensuite les méthodes de calcul de ca...

Research paper thumbnail of PreLie-decorated hypertrees

Weighted hypertrees have been used by C. Jensen, J. McCammond, and J. Meier to compute some Euler... more Weighted hypertrees have been used by C. Jensen, J. McCammond, and J. Meier to compute some Euler characteristics in group theory. We link them to decorated hypertrees and 2-coloured rooted trees. After the enumeration of pointed and non-pointed types of decorated hypertrees, we compute the character for the action of the symmetric group on these hypertrees.

Research paper thumbnail of Hypertree posets and

We adapt here the computation of characters on incidence Hopf algebras introduced by W. Schmitt i... more We adapt here the computation of characters on incidence Hopf algebras introduced by W. Schmitt in the 1990s to a family mixing bounded and unbounded posets. We then apply our results to the family of hypertree posets and partition posets. As a consequence, we obtain some enumerative formulas and a new proof for the computation of the Moebius numbers of the hypertree posets. Moreover, we compute the coproduct of the incidence Hopf algebra and recover a known formula for the number of hypertrees with fixed valency set and edge sizes set.

Research paper thumbnail of Action of the symmetric groups on the homology of the hypertree posets

Abstract. The set of hypertrees on n vertices can be endowed with a poset structure. J. McCammond... more Abstract. The set of hypertrees on n vertices can be endowed with a poset structure. J. McCammond and J. Meier computed the dimension of the unique non zero homology group of the hypertree poset. We give another proof of their result and use the theory of species to determine the action of the symmetric group on this homology group, which is linked with the anti-cyclic structure of the Prelie operad. We also compute the action on the Whitney homology of the poset. Résumé. L’ensemble des hyperarbres à n sommets peut être muni d’un ordre partiel. J. McCammond et J. Meier ont calculé la dimension de l’unique groupe d’homologie non trivial du poset des hyperarbres. Après avoir donné une autre preuve de ce résultat, nous utilisons la théorie des espèces pour déterminer l’action du groupe symétrique sur ce groupe, que nous relions à la structure anti-cyclique de l’opérade Prelie. Nous calculons aussi l’action du groupe symétrique sur l’homologie de Whitney du poset. Contents

Research paper thumbnail of Decorated Hypertrees

C. Jensen, J. McCammond and J. Meier have used weighted hypertrees to compute the Euler character... more C. Jensen, J. McCammond and J. Meier have used weighted hypertrees to compute the Euler characteristic of a subgroup of the automorphism group of a free product. Weighted hypertrees also appear in the study of the homology of the hypertree poset. We link them to decorated hypertrees after a general study on decorated hypertrees, which we enumerate using box trees.

Research paper thumbnail of Generalised mixed distributive laws and Hopf-Borel type theorem for operads

arXiv: Combinatorics, 2017

In 2008, Loday generalises Hopf-Borel theorem to operads. We extend here his result by loosening ... more In 2008, Loday generalises Hopf-Borel theorem to operads. We extend here his result by loosening and reducing hypotheses of this theorem to a class of rewriting rules generalising the classical notion of mixed distributive laws, that we call generalised mixed distributive laws. This enables us to show that for any operads P and Q having the same underlying S-module, there exists a generalised mixed distributive law lambda\lambdalambda such that any connected P coQ-bialgebra satisfying lambda\lambdalambda is free and cofree over its primitive elements. Our reasoning permits us to generate many new examples, while recovering the known ones by considering dual relations.

Research paper thumbnail of Some properties of the parking function poset

ArXiv, 2021

In 1980, Edelman defined a poset on objects called the noncrossing 2-partitions. They are closely... more In 1980, Edelman defined a poset on objects called the noncrossing 2-partitions. They are closely related with noncrossing partitions and parking functions. To some extent, his definition is a precursor of the parking space theory, in the framework of finite reflection groups. We present some enumerative and topological properties of this poset. In particular, we get a formula counting certain chains, that encompasses formulas for Whitney numbers (of both kinds). We prove shellability of the poset, and compute its homology as a representation of the symmetric group. We moreover link it with two well-known polytopes : the associahedron and the permutohedron.

Research paper thumbnail of Semi-pointed partition posets and Species Bérénice Delcroix-Oger

We define semi-pointed partition posets, which are a generalisation of partition posets and show ... more We define semi-pointed partition posets, which are a generalisation of partition posets and show that they are Cohen-Macaulay. We then use multichains to compute the dimension and the character for the action of the symmetric groups on their homology. We finally study the associated incidence Hopf algebra, which is similar to the Faà di Bruno Hopf algebra.

Research paper thumbnail of Hypertree and semi-pointed partitions

HAL (Le Centre pour la Communication Scientifique Directe), Nov 21, 2014

Cette thèse est consacrée à l'étude combinatoire, algébrique et homologique des hyperarbres et de... more Cette thèse est consacrée à l'étude combinatoire, algébrique et homologique des hyperarbres et des partitions semi-pointées. Nous étudions plus précisément des structures algébriques et homologiques construites à partir des hyperarbres, puis des partitions semi-pointées, qui apparaissent naturellement au cours de notre étude. Après un bref rappel des notions utilisées, nous utilisons la théorie des espèces de structure introduite par A. Joyal afin de déterminer l'action du groupe symétrique sur l'homologie du poset des hyperarbres, connu aussi sous le nom de poset de Whitehead. Cette action s'identifie à l'action du groupe symétrique liée à la structure anti-cyclique de l'opérade PreLie. Nous raffinons ensuite nos calculs sur une graduation de l'homologie, appelée homologie de Whitney. Lors de cette étude interviennent des formules semblant décrire des hyperarbres décorés par des espèces. Nous définissons la notion d'hyperarbre aux arêtes décorées par une espèce avant d'établir des équations fonctionnelles vérifiées par ces hyperarbres. Ces hyperarbres décorés peuvent être décrits comme des cas particuliers d'arborescence R-enrichie. Une bijection des hyperarbres décorés avec des arbres en boîtes et des partitions dont les parts sont décorées permet d'obtenir une formule close pour leur cardinal, à l'aide d'un codage de Prüfer. Certains exemples pertinents reliés à des objets connus sont exhibés. Nous généralisons ensuite la décoration des hyperarbres en décorant à la fois les arêtes et le voisinage des sommets de l'hyperarbre, ce qui permet d'obtenir une interprétation combinatoire de l'homologie de Whitney du poset des hyperarbres en terme d'hyperarbres bidécorés. Nous adaptons ensuite les méthodes de calcul de caractères sur les algèbres de Hopf d'incidence, introduites par W. Schmitt dans le cas de familles de posets bornés, à des familles de posets non bornés vérifiant certaines propriétés. Cette adaptation repose sur l'introduction d'une bigèbre formée sur les posets dont nous relions le coproduit au coproduit sur l'algèbre de Hopf d'incidence obtenue en bornant les posets par l'ajout d'un maximum. Nous appliquons ensuite cette adaptation aux posets des hyperarbres. Nous donnons une formule explicite pour le coproduit de la bigèbre associée, qui fait intervenir le cardinal de l'ensemble des hyperarbres dont la taille des arêtes et la valence des sommets sont fixées. Enfin, une sorte d'hyperarbre décoré, appelée hyperarbre aux arêtes pointées, peut être à son tour munie d'un ordre partiel. Nous montrons que ces posets sont Cohen-Macaulay avant de calculer la dimension de l'unique groupe d'homologie non nulle. L'étude de ces posets fait apparaître une généralisation des posets des partitions et des posets des partitions pointées : les poset des partitions semi-pointées. Nous montrons que ces posets sont aussi Cohen-Macaulay, avant de déterminer à l'aide de la théorie des espèces une formule close pour la dimension de l'unique groupe d'homologie non trivial de ces posets.

Research paper thumbnail of Cellular diagonals of permutahedra

2.1. Partition forests 2.2. Möbius polynomial 2.3. Rainbow forests 2.4. Enumeration of vertices o... more 2.1. Partition forests 2.2. Möbius polynomial 2.3. Rainbow forests 2.4. Enumeration of vertices of B ℓ n 2.5. Enumeration of regions and bounded regions of B ℓ n 3. Face poset and combinatorial description of B ℓ n (a) 3.1. Ordered partition forests 3.2. From partition forests to ordered partition forests 3.3. A criterion for ordered partition forests Part II. Diagonals of permutahedra 4. Cellular diagonals 4.1. Cellular diagonals for polytopes 4.2. Cellular diagonals for the permutahedra 4.3. Enumerative results on cellular diagonals of the permutahedra 5. Operadic diagonals 5.1. The LA and SU diagonals 5.2. The operadic property 5.3. Isomorphisms between operadic diagonals 5.4. Facets of operadic diagonals 5.5. Vertices of operadic diagonals 5.6. Relation to the facial weak order 6. Shift lattices 6.1. Topological enhancement of the original SU diagonal 6.2. Shifts under the face poset isomorphism 6.3. Shift lattices 6.4. Cubical description 6.5. Matrix description Part III. Higher algebraic structures 7. Higher tensor products 7.1. Topological operadic structures 7.2. Relating operadic structures 7.3. Tensor products References

Research paper thumbnail of Tridendriform Algebras on Hypergraph Polytopes

HAL (Le Centre pour la Communication Scientifique Directe), Dec 13, 2022

We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the ... more We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the shuffle product on the faces of associahedra and permutohedra, to other families of hypergraph polytopes (or nestohedra), including simplices, hypercubes and some new families. We also extend the shuffle product to take more than two arguments, and define accordingly a new algebraic structure, that we call polydendriform, from which the original tridendriform equations can be crisply synthesized.

Research paper thumbnail of Non-ambiguous trees: new results and generalisation

arXiv (Cornell University), Nov 30, 2015

We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a... more We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differential equation whose solution can be described combinatorially. This yield a new formula for the number of NATs. We also obtain q-versions of our formula. And we generalize NATs to higher dimension. Résumé. Nous introduisons une nouvelle définition des arbres non ambigus (NATs) en terme d'arbres binaireś etiquetés. Nous en déduisons uneéquation différentielle, dont les solutions peuventêtre décrites de manière combinatoire. Ceci conduità une nouvelle formule pour le nombre de NATs. Nous démontrons aussi des q-versions des formules obtenues. Enfin, nous généralisons la notion de NAT en dimension supérieure.

Research paper thumbnail of Semi-pointed partition posets and Species

arXiv (Cornell University), Jun 3, 2015

We define semi-pointed partition posets, which are a generalisation of partition posets and show ... more We define semi-pointed partition posets, which are a generalisation of partition posets and show that they are Cohen-Macaulay. We then use multichains to compute the dimension and the character for the action of the symmetric groups on their homology. We finally study the associated incidence Hopf algebra, which is similar to the Faà di Bruno Hopf algebra.

Research paper thumbnail of Non-ambiguous trees: new results and generalisation (Full version)

arXiv (Cornell University), Mar 12, 2021

We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a... more We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differential equation whose solution can be described combinatorially. This yields a new formula for the number of NATs. We also obtain q-versions of our formula. We finally generalise NATs to higher dimension.

Research paper thumbnail of Non-ambiguous trees: New results and generalisation

European Journal of Combinatorics, Jun 1, 2021

We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a... more We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differential equation whose solution can be described combinatorially. This yields a new formula for the number of NATs. We also obtain q-versions of our formula. We finally generalise NATs to higher dimension.

Research paper thumbnail of Incidence Hopf algebra of the hypertree posets

HAL (Le Centre pour la Communication Scientifique Directe), 2015

INCIDENCE HOPF ALGEBRA OF THE HYPERTREE POSETS fÉÉxsgi hivgysEyqi Abstract. e dpt the omputtion o... more INCIDENCE HOPF ALGEBRA OF THE HYPERTREE POSETS fÉÉxsgi hivgysEyqi Abstract. e dpt the omputtion of hrters on inidene ropf lgers inE trodued y hmitt in the IWWHs for fmilies of ounded posets to fmily mixing ounded nd unounded (nite posetsF his omputtion relies on the introdution of n uxiliry ilgerX the oprodut in this ilger enles us to ompute the onE volution of some hrters on the inidene ropf lgerF efter estlishing generl result on the link etween the ilger nd the inidene ropf lgerD we pply it to the fmily of hypertree posets nd prtition posetsF his link for hypertree posets enles us to reover the wöius numers of these posets due to the oprodut in the ssoited ilgerF his oprodut is omputed using the numer of hypertrees with (xed vleny set nd (xed edge sizes setF Contents Coproduct in the bialgebra 15 6. Computation of the Möbius number of augmented hypertree posets 18 References 21

Research paper thumbnail of Non-ambiguous trees: new results ans generalizations

Le Centre pour la Communication Scientifique Directe - HAL - Université Toulouse - Jean Jaurès, 2019

Research paper thumbnail of Polydendriform structure on faces of hypergraph polytopes

We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the ... more We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the shuffle product on the faces of associahedra and permutohedra, to other families of nestohedra, including simplices, hypercubes and yet other less known families. We also extend the shuffle product to take more than two arguments, and define accordingly a new algebraic structure, that we call \emph{polydendriform}, from which the original tridendriform equations can be crisply synthesised.

Research paper thumbnail of Confluence laws and Hopf-Borel type theorem for operads

arXiv: Combinatorics, 2019

In 2008, Loday shed light on the existence of Hopf-Borel theorems for operads. Using the vocabula... more In 2008, Loday shed light on the existence of Hopf-Borel theorems for operads. Using the vocabulary of category theory, Livernet, Mesablishvili and Wisbauer extended such theorems to monads. In both cases, the reasoning was to start from a mixed distributive law and then to prove that it induces an isomorphism of species to finally get a rigidity theorem. Our reasoning goes here backward: we prove that from an isomorphism of species one can get what we called a confluence law, which generalises mixed distributive laws, and that it is enough to obtain a rigidity theorem. This enables us to show that for any operads P and Q having the same underlying S-module, there exists a confluence law α such that any conilpotent P coQ-bialgebra satisfying α is free and cofree over its primitive elements. Our reasoning permits us to generate many new examples, while recovering the known ones by considering dual relations.

Research paper thumbnail of An operad is never free as a pre-Lie algebra

arXiv: Rings and Algebras, 2017

An operad is naturally endowed with a pre-Lie structure. We prove that as a pre-Lie algebra an op... more An operad is naturally endowed with a pre-Lie structure. We prove that as a pre-Lie algebra an operad is not free. The proof holds on defining a non-vanishing linear operation in the pre-Lie algebra which is zero in any operad.

Research paper thumbnail of Hypertrees and semi-pointed Partitions : combinatorial, algebraic and homological Aspects

Cette thèse est consacrée à l’étude combinatoire, algébrique et homologique des hyperarbres et de... more Cette thèse est consacrée à l’étude combinatoire, algébrique et homologique des hyperarbres et des partitions semi-pointées. Nous étudions plus précisément des structures algébriques et homologiques construites à partir des hyperarbres, puis des partitions semi-pointées.Après un bref rappel des notions utilisées, nous utilisons la théorie des espèces de structure afin de déterminer l’action du groupe symétrique sur l’homologie du poset des hyperarbres. Cette action s’identifie à l’action du groupe symétrique liée à la structure anti-cyclique de l’opérade PreLie. Nous raffinons ensuite nos calculs sur une graduation de l’homologie, appelée homologie de Whitney. Cette étude motive l'introduction de la notion d’hyperarbre aux arêtes décorées par une espèce. Une bijection des hyperarbres décorés avec des arbres en boîtes et des partitions décorées permet d’obtenir une formule close pour leur cardinal, à l’aide d’un codage de Prüfer. Nous adaptons ensuite les méthodes de calcul de ca...

Research paper thumbnail of PreLie-decorated hypertrees

Weighted hypertrees have been used by C. Jensen, J. McCammond, and J. Meier to compute some Euler... more Weighted hypertrees have been used by C. Jensen, J. McCammond, and J. Meier to compute some Euler characteristics in group theory. We link them to decorated hypertrees and 2-coloured rooted trees. After the enumeration of pointed and non-pointed types of decorated hypertrees, we compute the character for the action of the symmetric group on these hypertrees.

Research paper thumbnail of Hypertree posets and

We adapt here the computation of characters on incidence Hopf algebras introduced by W. Schmitt i... more We adapt here the computation of characters on incidence Hopf algebras introduced by W. Schmitt in the 1990s to a family mixing bounded and unbounded posets. We then apply our results to the family of hypertree posets and partition posets. As a consequence, we obtain some enumerative formulas and a new proof for the computation of the Moebius numbers of the hypertree posets. Moreover, we compute the coproduct of the incidence Hopf algebra and recover a known formula for the number of hypertrees with fixed valency set and edge sizes set.

Research paper thumbnail of Action of the symmetric groups on the homology of the hypertree posets

Abstract. The set of hypertrees on n vertices can be endowed with a poset structure. J. McCammond... more Abstract. The set of hypertrees on n vertices can be endowed with a poset structure. J. McCammond and J. Meier computed the dimension of the unique non zero homology group of the hypertree poset. We give another proof of their result and use the theory of species to determine the action of the symmetric group on this homology group, which is linked with the anti-cyclic structure of the Prelie operad. We also compute the action on the Whitney homology of the poset. Résumé. L’ensemble des hyperarbres à n sommets peut être muni d’un ordre partiel. J. McCammond et J. Meier ont calculé la dimension de l’unique groupe d’homologie non trivial du poset des hyperarbres. Après avoir donné une autre preuve de ce résultat, nous utilisons la théorie des espèces pour déterminer l’action du groupe symétrique sur ce groupe, que nous relions à la structure anti-cyclique de l’opérade Prelie. Nous calculons aussi l’action du groupe symétrique sur l’homologie de Whitney du poset. Contents

Research paper thumbnail of Decorated Hypertrees

C. Jensen, J. McCammond and J. Meier have used weighted hypertrees to compute the Euler character... more C. Jensen, J. McCammond and J. Meier have used weighted hypertrees to compute the Euler characteristic of a subgroup of the automorphism group of a free product. Weighted hypertrees also appear in the study of the homology of the hypertree poset. We link them to decorated hypertrees after a general study on decorated hypertrees, which we enumerate using box trees.

Research paper thumbnail of Generalised mixed distributive laws and Hopf-Borel type theorem for operads

arXiv: Combinatorics, 2017

In 2008, Loday generalises Hopf-Borel theorem to operads. We extend here his result by loosening ... more In 2008, Loday generalises Hopf-Borel theorem to operads. We extend here his result by loosening and reducing hypotheses of this theorem to a class of rewriting rules generalising the classical notion of mixed distributive laws, that we call generalised mixed distributive laws. This enables us to show that for any operads P and Q having the same underlying S-module, there exists a generalised mixed distributive law lambda\lambdalambda such that any connected P coQ-bialgebra satisfying lambda\lambdalambda is free and cofree over its primitive elements. Our reasoning permits us to generate many new examples, while recovering the known ones by considering dual relations.

Research paper thumbnail of Some properties of the parking function poset

ArXiv, 2021

In 1980, Edelman defined a poset on objects called the noncrossing 2-partitions. They are closely... more In 1980, Edelman defined a poset on objects called the noncrossing 2-partitions. They are closely related with noncrossing partitions and parking functions. To some extent, his definition is a precursor of the parking space theory, in the framework of finite reflection groups. We present some enumerative and topological properties of this poset. In particular, we get a formula counting certain chains, that encompasses formulas for Whitney numbers (of both kinds). We prove shellability of the poset, and compute its homology as a representation of the symmetric group. We moreover link it with two well-known polytopes : the associahedron and the permutohedron.

Research paper thumbnail of Semi-pointed partition posets and Species Bérénice Delcroix-Oger

We define semi-pointed partition posets, which are a generalisation of partition posets and show ... more We define semi-pointed partition posets, which are a generalisation of partition posets and show that they are Cohen-Macaulay. We then use multichains to compute the dimension and the character for the action of the symmetric groups on their homology. We finally study the associated incidence Hopf algebra, which is similar to the Faà di Bruno Hopf algebra.