Bandita mohapatra - Academia.edu (original) (raw)
Uploads
Papers by Bandita mohapatra
Asian Journal of Chemistry
In this study, an enhanced antifungal response of ZnO nanobullets (NBs) against Schizosaccharomyc... more In this study, an enhanced antifungal response of ZnO nanobullets (NBs) against Schizosaccharomyces pombe is reported. The ZnO NBs were prepared by alkali precipitation method and confirmed by microscopic, morphological and optical studies using SEM, EDX, TEM, HRTEM and photoluminescence (PL) spectroscopic techniques. Growth kinetics and MIC studies were conducted following the growth inhibition percentage studies. Colony forming assay, well diffusion, disc diffusion, N-acetyl cysteine (NAC) effect on S. pombe growth, trypan blue study, cellular reactive oxygen species (ROS) quantification using H2DCFDA dye, Bradford assay, DNA fragmentation and all other relevant protocols were performed in antifungal studies. ZnO nanobullets (NBs) were shown by SEM and TEM examinations to have an average size of 50 nm. The hexagonal wurtzite structure of ZnO NBs was confirmed by HRTEM’s lattice fringe findings. Defectrelated visible emissions at 412, 436, 457 and 564 nm were confirmed via PL analy...
Materials Today Communications
Materials Today Communications
Journal of Physics and Chemistry of Solids, 2018
Morphological, plasmonic, and enhanced antibacterial properties of Ag nanoparticles prepared usin... more Morphological, plasmonic, and enhanced antibacterial properties of Ag nanoparticles prepared using Zingiber officinale extract
Advanced Materials Letters, 2015
Stable aqueous dispersions with high concentration of silver nanoparticles were synthesized by a ... more Stable aqueous dispersions with high concentration of silver nanoparticles were synthesized by a facile and green synthetic route by treating silver ions with aqueous Citrus limon extract, used as a reducing and capping agent. The formation and growth of silver nanoparticles, prepared by this simple and convenient method, was monitored using UV-visible absorption spectroscopy. The effects of Ag concentration, Citrus limon extract concentration, in-situ and ex-situ pH variations upon NaOH addition on the structural, optical and plasmonic properties of the synthesized Ag nanoparticles were investigated. X-ray diffraction studies revealed the formation of Ag nanoparticles, whose morphology was studied using atomic force microscopy. UV-visible absorption studies revealed surface plasmon resonance (SPR) peak around 465 nm, confirming the presence of Ag nanoparticles. The SPR peak blue shifted along with significant enhancement in intensity with increase in Ag concentration and pH, due to the growth and increased aggregation of Ag nanoparticles. We have shown that addition of NaOH is a key to rapid biosynthesis of stable aqueous dispersions of high concentration of silver nanoparticles. This green synthetic route provides faster synthesis of silver nanoparticles with improved colloidal stability, which can be used in foods, cosmetics and biomedical applications.
Journal of Alloys and Compounds, 2015
We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanopart... more We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO 3 solution. The effects of AgNO 3 concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV-visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO 3 concentration resulted in the formation of Ag nanorods. UV-visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO 3 concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.
Asian Journal of Chemistry
In this study, an enhanced antifungal response of ZnO nanobullets (NBs) against Schizosaccharomyc... more In this study, an enhanced antifungal response of ZnO nanobullets (NBs) against Schizosaccharomyces pombe is reported. The ZnO NBs were prepared by alkali precipitation method and confirmed by microscopic, morphological and optical studies using SEM, EDX, TEM, HRTEM and photoluminescence (PL) spectroscopic techniques. Growth kinetics and MIC studies were conducted following the growth inhibition percentage studies. Colony forming assay, well diffusion, disc diffusion, N-acetyl cysteine (NAC) effect on S. pombe growth, trypan blue study, cellular reactive oxygen species (ROS) quantification using H2DCFDA dye, Bradford assay, DNA fragmentation and all other relevant protocols were performed in antifungal studies. ZnO nanobullets (NBs) were shown by SEM and TEM examinations to have an average size of 50 nm. The hexagonal wurtzite structure of ZnO NBs was confirmed by HRTEM’s lattice fringe findings. Defectrelated visible emissions at 412, 436, 457 and 564 nm were confirmed via PL analy...
Materials Today Communications
Materials Today Communications
Journal of Physics and Chemistry of Solids, 2018
Morphological, plasmonic, and enhanced antibacterial properties of Ag nanoparticles prepared usin... more Morphological, plasmonic, and enhanced antibacterial properties of Ag nanoparticles prepared using Zingiber officinale extract
Advanced Materials Letters, 2015
Stable aqueous dispersions with high concentration of silver nanoparticles were synthesized by a ... more Stable aqueous dispersions with high concentration of silver nanoparticles were synthesized by a facile and green synthetic route by treating silver ions with aqueous Citrus limon extract, used as a reducing and capping agent. The formation and growth of silver nanoparticles, prepared by this simple and convenient method, was monitored using UV-visible absorption spectroscopy. The effects of Ag concentration, Citrus limon extract concentration, in-situ and ex-situ pH variations upon NaOH addition on the structural, optical and plasmonic properties of the synthesized Ag nanoparticles were investigated. X-ray diffraction studies revealed the formation of Ag nanoparticles, whose morphology was studied using atomic force microscopy. UV-visible absorption studies revealed surface plasmon resonance (SPR) peak around 465 nm, confirming the presence of Ag nanoparticles. The SPR peak blue shifted along with significant enhancement in intensity with increase in Ag concentration and pH, due to the growth and increased aggregation of Ag nanoparticles. We have shown that addition of NaOH is a key to rapid biosynthesis of stable aqueous dispersions of high concentration of silver nanoparticles. This green synthetic route provides faster synthesis of silver nanoparticles with improved colloidal stability, which can be used in foods, cosmetics and biomedical applications.
Journal of Alloys and Compounds, 2015
We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanopart... more We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO 3 solution. The effects of AgNO 3 concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV-visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO 3 concentration resulted in the formation of Ag nanorods. UV-visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO 3 concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.