Bao nguyen - Academia.edu (original) (raw)
Papers by Bao nguyen
Molecular Endocrinology, 2005
Molecular Endocrinology. Skip to main page content. ...
Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 2002
The Citrus cultivars &amp... more The Citrus cultivars 'Amargo' and 'Pineapple' produce embryogenic cultures on two types of sugars, galactose and lactose. Two percent lactose is optimal for both cultivars; embryogenic callus is produced 8-10 weeks after inoculation. Whereas 2% galactose is optimal for…
Biochemistry, Jan 18, 2003
FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphoryl... more FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphorylated CTD of RNAP II. The phosphatase activity of FCP1 is strongly enhanced by the carboxylterminal domain of RAP74 (cterRAP74, residues 436-517), and this stimulatory effect of TFIIF can be blocked by TFIIB. It has been shown that cterRAP74 and the core domain of hTFIIB (TFIIBc, residues 112-316) directly interact with the carboxyl-terminal domain of hFCP1 (cterFCP, residues 879-961), and these interactions may be responsible for the regulatory activities of TFIIF and TFIIB on FCP1. We have determined the NMR solution structure of human cterRAP74, and we have used NMR methods to map the cterFCP-binding sites for both cterRAP74 and human TFIIB. We show that cterFCP binds to a groove of cterRAP74 between R-helices H2 and H3, without affecting the secondary structure of cterRAP74. We also show that cterFCP binds to a groove of TFIIBc between R-helices D1 and E1 in the first cyclin repeat. We find that the cterFCP-binding site of TFIIBc is very similar to the binding site for the HSV transcriptional activator protein VP16 on the first cyclin repeat of TFIIBc. The cterFCP-binding sites of both RAP74 and TFIIBc form shallow grooves on the protein surface, and they are both rich in hydrophobic and positively charged amino acid residues. These results provide new information about the recognition of acidic-rich activation domains involved in transcriptional regulation, and provide insights into how TFIIF and TFIIB regulate the FCP1 phosphatase activity in vivo.
Molecular endocrinology (Baltimore, Md.), 2003
The G protein-coupled receptors LGR7 and LGR8 have recently been identified as the primary recept... more The G protein-coupled receptors LGR7 and LGR8 have recently been identified as the primary receptors for the polypeptide hormone relaxin and relaxin-like factors. RT-PCR confirmed the existence of mRNA for both LGR7 and LRG8 in THP-1 cells. Whole cell treatment of THP-1 cells with relaxin produced a biphasic time course in cAMP accumulation, where the first peak appeared as early as 1-2 min with a second peak at 10-20 min. Selective inhibitors for phosphoinositide 3-kinase (PI3K), such as wortmannin and LY294002, showed a dose-dependent inhibition of relaxin-mediated increases in cAMP, specific for the second peak of the relaxin time course. Adenylyl cyclase activation by relaxin in purified plasma membranes from THP-1 cells was not inhibited by LY294002, consistent with a mechanism involving direct stimulation by a Galphas-coupled relaxin receptor. However, reconstitution of membranes with cytosol from THP-1 cells enhanced adenylyl cyclase activity and restored LY294002 sensitivity. In addition, relaxin increased PI3K activity in THP-1 cells. Neither the effects of relaxin nor the inhibition of relaxin by LY294002 was mediated by the activity of phosphodiesterases. Taken together, we show that PI3K is required for the biphasic stimulation of cAMP by relaxin in THP-1 cells and present a novel signal transduction pathway for the activation of adenylyl cyclase by a G protein-coupled receptor.
Molecular endocrinology (Baltimore, Md.), 2005
Relaxin is a polypeptide hormone that activates the leucine-rich repeat containing G protein-coup... more Relaxin is a polypeptide hormone that activates the leucine-rich repeat containing G protein-coupled receptors, LGR7 and LGR8. In an earlier study, we reported that relaxin produces a biphasic time course and the second wave of cAMP is highly sensitive to phosphoinositide-3 kinase inhibitors (LY294002 and wortmannin). LY294002 inhibits relaxin-mediated increases in cAMP production by 40-50% across a large range of relaxin concentrations. Here we show that protein kinase C zeta (PKCzeta) is a component of relaxin signaling in THP-1 cells. Sphingomyelinase increases cAMP production due to the release of ceramide, a direct activator of PKCzeta. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin induced cAMP production to the same degree (approximately 40%) as LY294002. Relaxin stimulates PKCzeta translocation to the plasma membrane in THP-1, MCF-7, pregnant human myometrial 1-31, and mouse mesangial cells, as shown by immunocytochemistry. PKCzeta translocation is phosphoinositide-3 kinase dependent and independent of cAMP production. Antisense PKCzeta oligodeoxynucleotides (PKCzeta-ODNs) deplete both PKCzeta transcript and protein levels in THP-1 cells. PKCzeta-ODNs abolish relaxin-mediated PKCzeta translocation and inhibit relaxin stimulation of cAMP by 40%, as compared with mock and random ODN controls. Treatment with LY294002 in the presence of PKCzeta-ODNs results in little further inhibition. In summary, we present a novel role for PKCzeta in relaxin-mediated stimulation of cAMP.
Annals of the New York Academy of Sciences, 2005
Relaxin stimulates cAMP production and activation of ERK and PI3K in THP-1 cells. Relaxin also st... more Relaxin stimulates cAMP production and activation of ERK and PI3K in THP-1 cells. Relaxin also stimulates protein kinase C zeta (PKCζ) translocation to the plasma membrane in a PI3K-dependent manner in THP-1 and MCF-7 cells. However, relaxin did not increase cAMP production in MCF-7 cells. We overexpressed different adenylyl cyclase (AC) isoforms in MCF-7 cells to examine coupling of endogenous relaxin receptors to cAMP production. Overexpression of types II and IV AC had no effect on cAMP production by relaxin. However, overexpression of type V AC, which is activated by PKCζ, showed synergistic stimulation of cAMP by relaxin and forskolin.
The journal of allergy and clinical immunology. In practice
A rapid radiographic contrast media desensitization protocol allowed a patient with a history of ... more A rapid radiographic contrast media desensitization protocol allowed a patient with a history of repeated severe non-IgE-mediated anaphylactic reactions to radiographic contrast media, in spite of standard premedication prophylaxis, to tolerate urgently needed angiography and percutaneous coronary intervention.
Molecular and cellular biochemistry, 2014
Myocardial ischemic stress and early reperfusion injury in patients undergoing coronary artery by... more Myocardial ischemic stress and early reperfusion injury in patients undergoing coronary artery bypass grafting (CABG) operated on using intermittent cross-clamp fibrillation (ICCF) are not presently known. The role of mini-cardiopulmonary bypass (mCPB) versus conventional CPB (cCPB) during ICCF has not been investigated. These issues have been addressed as secondary objective of randomised controlled trial (ISRCTN30610605) comparing cCPB and mCPB. Twenty-six patients undergoing primary elective CABG using ICCF were randomised to either cCPB or mCPB. Paired left ventricular biopsies collected from 21 patients at the beginning and at the end of CPB were used to measure intracellular substrates (ATP and related compounds). Cardiac troponin T (cTnT) and CK-MB levels were measured in plasma collected from all patients preoperatively and after 1, 30, 60, 120, and 300 min after institution of CPB. ICCF was associated with significant ischemic stress as seen by fall in energy-rich phosphates early after reperfusion. There was also a fall in nicotinamide adenine dinucleotide (NAD(+)) indicating cardiomyocyte death which was confirmed by early release of cTnT and CK-MB during CPB. Ischemic stress and early myocardial injury were similar for cCPB and mCPB. However, the overall cardiac injury was significantly lower in the mCPB group as measured by cTnT (mean ± SEM: 96 ± 14 vs. 59 ± 8 µg/l, p = 0.02), but not with CK-MB. ICCF is associated with significant metabolic derangement and early myocardial injury. This early outcome was not affected by the CPB technique. However, the overall cardiac injury was lower for mCPB only when measured using cTnT.
Cancer research, Jan 15, 2014
There have been a number of clinical trials testing the efficacy of FMS-like tyrosine kinase-3 (F... more There have been a number of clinical trials testing the efficacy of FMS-like tyrosine kinase-3 (FLT3) tyrosine kinase inhibitors (TKI) in patients with acute myeloid leukemia (AML) harboring a constitutively activating mutation in FLT3. However, there has been limited efficacy, most often because of inadequate achievement of FLT3 inhibition through a variety of mechanisms. In a previous study, TTT-3002 was identified as a novel FLT3 inhibitor with the most potent activity to date against FLT3 internal tandem duplication (FLT3/ITD) mutations. Here, the activity of TTT-3002 is demonstrated against a broad spectrum of FLT3-activating point mutations, including the most frequently occurring D835 mutations. The compound is also active against a number of point mutations selected for in FLT3/ITD alleles that confer resistance to other TKIs, including the F691L gatekeeper mutation. TTT-3002 maintains activity against patients with relapsed AML samples that are resistant to sorafenib and AC220. Studies utilizing human plasma samples from healthy donors and patients with AML indicate that TTT-3002 is only moderately protein bound compared with several other TKIs currently in clinical trials. Tumor burden of mice in a FLT3 TKI-resistant transplant model is significantly improved by oral dosing of TTT-3002. Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI that may overcome some of the limitations of other TKIs in the treatment of FLT3-mutant AML. Cancer Res; 74(18); 5206-17. Ó2014 AACR.
Synlett, 2012
... Yield of deblocked peptide, 48%; purity, 93% (HPLC). (26) Akaji, Kuriyama, and Kiso have made... more ... Yield of deblocked peptide, 48%; purity, 93% (HPLC). (26) Akaji, Kuriyama, and Kiso have made use of HOAt as additive in connection with the use of DCIH as a coupling reagent for hindered systems. See ref 13. (27) Carpino, L. A.; El-Faham, A. J. Org. Chem. 1994, 59, 695. ...
The Journal of Thoracic and Cardiovascular Surgery, 2014
Systemic inflammatory responses are a major cause of morbidity and mortality in patients undergoi... more Systemic inflammatory responses are a major cause of morbidity and mortality in patients undergoing cardiac surgery with cardiopulmonary bypass. However, the underlying molecular mechanisms for systemic inflammation in response to cardiopulmonary bypass are poorly understood. A porcine model was established to study the signaling pathways that promote systemic inflammation in response to cardiac surgery with cardiopulmonary bypass under well-controlled experimental conditions. The influence of sulforaphane, an anti-inflammatory compound derived from green vegetables, on inflammation and injury in response to cardiopulmonary bypass was also studied. Intracellular staining and flow cytometry were performed to measure phosphorylation of p38 mitogen-activated protein kinase and the transcription factor nuclear factor-κB in granulocytes and mononuclear cells. Surgery with cardiopulmonary bypass for 1 to 2 hours enhanced phosphorylation of p38 (2.5-fold) and nuclear factor-κB (1.6-fold) in circulating mononuclear cells. Cardiopulmonary bypass also modified granulocytes by activating nuclear factor-κB (1.6-fold), whereas p38 was not altered. Histologic analyses revealed that cardiopulmonary bypass promoted acute tubular necrosis. Pretreatment of animals with sulforaphane reduced p38 (90% reduction) and nuclear factor-κB (50% reduction) phosphorylation in leukocytes and protected kidneys from injury. Systemic inflammatory responses after cardiopulmonary bypass were associated with activation of p38 and nuclear factor-κB pathways in circulating leukocytes. Inflammatory responses to cardiopulmonary bypass can be reduced by sulforaphane, which reduced leukocyte activation and protected against renal injury.
Eukaryotic Cell, 2014
Conditional gene silencing by RNA interference in Trypanosoma brucei can be inconclusive if knock... more Conditional gene silencing by RNA interference in Trypanosoma brucei can be inconclusive if knockdowns are inefficient or have off-target effects. To enable efficient, specific silencing of single-copy genes in mammalian-infective, bloodstream form trypanosomes, we developed a system that targets the heterologous and functional Trypanosoma cruzi U2AF35 3= untranslated region (UTR) (Tc3) or, alternatively, the sequence of the PTP tag, which can be fused to any mRNA of interest. Two cell lines were created, single-marker Tc3 (smTc3) and smPTP, which conditionally express Tc3 and PTP double-stranded RNA (dsRNA), respectively. The system depends on manipulating both alleles of the gene of interest so that cells exclusively express the target mRNA as a fusion to one of these heterologous sequences. We generated allele integration vectors in which the C-terminal part of a gene's coding sequence can be fused to either heterologous sequence in a single cloning step. We first tested this system with CITFA7, which encodes a well-characterized subunit of the class I transcription factor A (CITFA), an essential factor for transcription initiation by RNA polymerase I. Targeting either Tc3 or PTP fused to the CITFA7 mRNA resulted in gene knockdowns that were as efficient and specific as targeting the endogenous CITFA7 mRNA. Moreover, application of this system to CITFA1, which could not be silenced by established methods, demonstrated that the gene encodes an essential CITFA subunit that mediates binding of the transcription factor complex to RNA polymerase I promoters.
Bioorganic & Medicinal Chemistry Letters, 2009
Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using ... more Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell-and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 9-oxo-9H-fluorene ring a b s t r a c t As a continuation of our studies of apoptosis inducing 9-oxo-9H-fluorene-1-carboxamides as potential anticancer agents, we explored modification of the 9-oxo-9H-fluorene ring. SAR studies showed that most changes to the 9-oxo-9H-fluorene ring were not well tolerated, except the 9H-fluorene (2b) and dibenzothiophene (2d) analogs, which were about twofold less active than the 9-oxo-9H-fluorene analog 2a. Significantly, introduction of substitutions at the 7-position of the 9-oxo-9H-fluorene ring led to compounds 5a-5c with improved activity. Compound 5a was found to have EC 50 values of 0.15-0.29 lM
As a continuation of our efforts to discover and develop the apoptosis inducing 4-anilino-2-(2-py... more As a continuation of our efforts to discover and develop the apoptosis inducing 4-anilino-2-(2-pyridyl)pyrimidines as potential anticancer agents, we explored replacing the 2-pyridyl group by other aryl groups. SAR studies showed that the 2-pyridyl group can be replaced by a 3-pyridyl, 4-pyridyl and 2-pyrazinyl group, and that the SAR for the anilino group was similar to that of the 2-pyridyl series. However, replacement of the 2-pyridyl group by a phenyl group, a 3,5-dichloro-4-pyridyl group, or a saturated ring led to inactive compounds. Several potent compounds, including 2f, 3d, 3j and 4a, with EC 50 values of 0.048-0.024 lM in the apoptosis induction assay against T47D cells, were identified through the SAR studies. In a tubulin polymerization assay, compound 2f, which was active against all the three cell lines tested (T47D, HTC116 and SNU398), inhibited tubulin polymerization with an IC 50 value of 0.5 lM, while compound 2a, which was active against T47D cells but not active against HTC116 and SNU398 cells, was not active in the tubulin assay at up to 50 lM.
Molecular cell, 2006
The interaction between the amino-terminal transactivation domain (TAD) of p53 and TFIIH is direc... more The interaction between the amino-terminal transactivation domain (TAD) of p53 and TFIIH is directly correlated with the ability of p53 to activate both transcription initiation and elongation. We have identified a region within the p53 TAD that specifically interacts with the pleckstrin homology (PH) domain of the p62 and Tfb1 subunits of human and yeast TFIIH. We have solved the 3D structure of a complex between the p53 TAD and the PH domain of Tfb1 by NMR spectroscopy. Our structure reveals that p53 forms a nine residue amphipathic a helix (residues 47-55) upon binding to Tfb1. In addition, we demonstrate that diphosphorylation of p53 at Ser46 and Thr55 leads to a significant enhancement in p53 binding to p62 and Tfb1. These results indicate that a phosphorylation cascade involving Ser46 and Thr55 of p53 could play an important role in the regulation of select p53 target genes.
FCP1, a phosphatase specific for the carboxyl-terminal domain of the largest subunit of RNA polym... more FCP1, a phosphatase specific for the carboxyl-terminal domain of the largest subunit of RNA polymerase II, is regulated by the HIV-1 Tat protein, CK2, TFIIB, and the large subunit of TFIIF (RAP74). We have characterized the interactions of Tat and RAP74 with the BRCT-containing central domain of ). We demonstrated that FCP1 is required for Tat-mediated transactivation in vitro and that amino acids 562-685 of FCP1 are necessary for Tat interaction in yeast two-hybrid studies. From sequence alignments, we identified a conserved acidic/hydrophobic region in FCP1 adjacent to its highly conserved BRCT domain. In vitro binding studies with purified proteins indicate that HIV-1 Tat interacts with both the acidic/hydrophobic region and the BRCT domain of FCP1, whereas RAP74 436-517 interacts solely with a portion of the acidic/hydrophobic region containing a conserved LXXLL-like motif. HIV-1 Tat inhibits the binding of RAP74 436-517 to FCP1. In a companion paper (K. Abbott et al. Enhanced Binding of RNAPII CTD Phosphatase FCP1 to RAP74 Following CK2 Phosphorylation, Biochemistry 44, 2732-2745, we identified a novel CK2 site adjacent to this conserved LXXLL-like motif. Phosphorylation of FCP1 562-619 by CK2 at this site increases binding to RAP74 436-517 , but this phosphorylation is inhibited by Tat. Our results provide insights into the mechanisms by which Tat inhibits the FCP1 CTD phosphatase activity and by which FCP1 mediates transcriptional activation by Tat. In addition to increasing our understanding of the role of HIV-1 Tat in transcriptional regulation, this study defines a clear role for regions adjacent to the BRCT domain in promoting important protein-protein interactions.
Molecular Endocrinology, 2005
Molecular Endocrinology. Skip to main page content. ...
Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 2002
The Citrus cultivars &amp... more The Citrus cultivars 'Amargo' and 'Pineapple' produce embryogenic cultures on two types of sugars, galactose and lactose. Two percent lactose is optimal for both cultivars; embryogenic callus is produced 8-10 weeks after inoculation. Whereas 2% galactose is optimal for…
Biochemistry, Jan 18, 2003
FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphoryl... more FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphorylated CTD of RNAP II. The phosphatase activity of FCP1 is strongly enhanced by the carboxylterminal domain of RAP74 (cterRAP74, residues 436-517), and this stimulatory effect of TFIIF can be blocked by TFIIB. It has been shown that cterRAP74 and the core domain of hTFIIB (TFIIBc, residues 112-316) directly interact with the carboxyl-terminal domain of hFCP1 (cterFCP, residues 879-961), and these interactions may be responsible for the regulatory activities of TFIIF and TFIIB on FCP1. We have determined the NMR solution structure of human cterRAP74, and we have used NMR methods to map the cterFCP-binding sites for both cterRAP74 and human TFIIB. We show that cterFCP binds to a groove of cterRAP74 between R-helices H2 and H3, without affecting the secondary structure of cterRAP74. We also show that cterFCP binds to a groove of TFIIBc between R-helices D1 and E1 in the first cyclin repeat. We find that the cterFCP-binding site of TFIIBc is very similar to the binding site for the HSV transcriptional activator protein VP16 on the first cyclin repeat of TFIIBc. The cterFCP-binding sites of both RAP74 and TFIIBc form shallow grooves on the protein surface, and they are both rich in hydrophobic and positively charged amino acid residues. These results provide new information about the recognition of acidic-rich activation domains involved in transcriptional regulation, and provide insights into how TFIIF and TFIIB regulate the FCP1 phosphatase activity in vivo.
Molecular endocrinology (Baltimore, Md.), 2003
The G protein-coupled receptors LGR7 and LGR8 have recently been identified as the primary recept... more The G protein-coupled receptors LGR7 and LGR8 have recently been identified as the primary receptors for the polypeptide hormone relaxin and relaxin-like factors. RT-PCR confirmed the existence of mRNA for both LGR7 and LRG8 in THP-1 cells. Whole cell treatment of THP-1 cells with relaxin produced a biphasic time course in cAMP accumulation, where the first peak appeared as early as 1-2 min with a second peak at 10-20 min. Selective inhibitors for phosphoinositide 3-kinase (PI3K), such as wortmannin and LY294002, showed a dose-dependent inhibition of relaxin-mediated increases in cAMP, specific for the second peak of the relaxin time course. Adenylyl cyclase activation by relaxin in purified plasma membranes from THP-1 cells was not inhibited by LY294002, consistent with a mechanism involving direct stimulation by a Galphas-coupled relaxin receptor. However, reconstitution of membranes with cytosol from THP-1 cells enhanced adenylyl cyclase activity and restored LY294002 sensitivity. In addition, relaxin increased PI3K activity in THP-1 cells. Neither the effects of relaxin nor the inhibition of relaxin by LY294002 was mediated by the activity of phosphodiesterases. Taken together, we show that PI3K is required for the biphasic stimulation of cAMP by relaxin in THP-1 cells and present a novel signal transduction pathway for the activation of adenylyl cyclase by a G protein-coupled receptor.
Molecular endocrinology (Baltimore, Md.), 2005
Relaxin is a polypeptide hormone that activates the leucine-rich repeat containing G protein-coup... more Relaxin is a polypeptide hormone that activates the leucine-rich repeat containing G protein-coupled receptors, LGR7 and LGR8. In an earlier study, we reported that relaxin produces a biphasic time course and the second wave of cAMP is highly sensitive to phosphoinositide-3 kinase inhibitors (LY294002 and wortmannin). LY294002 inhibits relaxin-mediated increases in cAMP production by 40-50% across a large range of relaxin concentrations. Here we show that protein kinase C zeta (PKCzeta) is a component of relaxin signaling in THP-1 cells. Sphingomyelinase increases cAMP production due to the release of ceramide, a direct activator of PKCzeta. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin induced cAMP production to the same degree (approximately 40%) as LY294002. Relaxin stimulates PKCzeta translocation to the plasma membrane in THP-1, MCF-7, pregnant human myometrial 1-31, and mouse mesangial cells, as shown by immunocytochemistry. PKCzeta translocation is phosphoinositide-3 kinase dependent and independent of cAMP production. Antisense PKCzeta oligodeoxynucleotides (PKCzeta-ODNs) deplete both PKCzeta transcript and protein levels in THP-1 cells. PKCzeta-ODNs abolish relaxin-mediated PKCzeta translocation and inhibit relaxin stimulation of cAMP by 40%, as compared with mock and random ODN controls. Treatment with LY294002 in the presence of PKCzeta-ODNs results in little further inhibition. In summary, we present a novel role for PKCzeta in relaxin-mediated stimulation of cAMP.
Annals of the New York Academy of Sciences, 2005
Relaxin stimulates cAMP production and activation of ERK and PI3K in THP-1 cells. Relaxin also st... more Relaxin stimulates cAMP production and activation of ERK and PI3K in THP-1 cells. Relaxin also stimulates protein kinase C zeta (PKCζ) translocation to the plasma membrane in a PI3K-dependent manner in THP-1 and MCF-7 cells. However, relaxin did not increase cAMP production in MCF-7 cells. We overexpressed different adenylyl cyclase (AC) isoforms in MCF-7 cells to examine coupling of endogenous relaxin receptors to cAMP production. Overexpression of types II and IV AC had no effect on cAMP production by relaxin. However, overexpression of type V AC, which is activated by PKCζ, showed synergistic stimulation of cAMP by relaxin and forskolin.
The journal of allergy and clinical immunology. In practice
A rapid radiographic contrast media desensitization protocol allowed a patient with a history of ... more A rapid radiographic contrast media desensitization protocol allowed a patient with a history of repeated severe non-IgE-mediated anaphylactic reactions to radiographic contrast media, in spite of standard premedication prophylaxis, to tolerate urgently needed angiography and percutaneous coronary intervention.
Molecular and cellular biochemistry, 2014
Myocardial ischemic stress and early reperfusion injury in patients undergoing coronary artery by... more Myocardial ischemic stress and early reperfusion injury in patients undergoing coronary artery bypass grafting (CABG) operated on using intermittent cross-clamp fibrillation (ICCF) are not presently known. The role of mini-cardiopulmonary bypass (mCPB) versus conventional CPB (cCPB) during ICCF has not been investigated. These issues have been addressed as secondary objective of randomised controlled trial (ISRCTN30610605) comparing cCPB and mCPB. Twenty-six patients undergoing primary elective CABG using ICCF were randomised to either cCPB or mCPB. Paired left ventricular biopsies collected from 21 patients at the beginning and at the end of CPB were used to measure intracellular substrates (ATP and related compounds). Cardiac troponin T (cTnT) and CK-MB levels were measured in plasma collected from all patients preoperatively and after 1, 30, 60, 120, and 300 min after institution of CPB. ICCF was associated with significant ischemic stress as seen by fall in energy-rich phosphates early after reperfusion. There was also a fall in nicotinamide adenine dinucleotide (NAD(+)) indicating cardiomyocyte death which was confirmed by early release of cTnT and CK-MB during CPB. Ischemic stress and early myocardial injury were similar for cCPB and mCPB. However, the overall cardiac injury was significantly lower in the mCPB group as measured by cTnT (mean ± SEM: 96 ± 14 vs. 59 ± 8 µg/l, p = 0.02), but not with CK-MB. ICCF is associated with significant metabolic derangement and early myocardial injury. This early outcome was not affected by the CPB technique. However, the overall cardiac injury was lower for mCPB only when measured using cTnT.
Cancer research, Jan 15, 2014
There have been a number of clinical trials testing the efficacy of FMS-like tyrosine kinase-3 (F... more There have been a number of clinical trials testing the efficacy of FMS-like tyrosine kinase-3 (FLT3) tyrosine kinase inhibitors (TKI) in patients with acute myeloid leukemia (AML) harboring a constitutively activating mutation in FLT3. However, there has been limited efficacy, most often because of inadequate achievement of FLT3 inhibition through a variety of mechanisms. In a previous study, TTT-3002 was identified as a novel FLT3 inhibitor with the most potent activity to date against FLT3 internal tandem duplication (FLT3/ITD) mutations. Here, the activity of TTT-3002 is demonstrated against a broad spectrum of FLT3-activating point mutations, including the most frequently occurring D835 mutations. The compound is also active against a number of point mutations selected for in FLT3/ITD alleles that confer resistance to other TKIs, including the F691L gatekeeper mutation. TTT-3002 maintains activity against patients with relapsed AML samples that are resistant to sorafenib and AC220. Studies utilizing human plasma samples from healthy donors and patients with AML indicate that TTT-3002 is only moderately protein bound compared with several other TKIs currently in clinical trials. Tumor burden of mice in a FLT3 TKI-resistant transplant model is significantly improved by oral dosing of TTT-3002. Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI that may overcome some of the limitations of other TKIs in the treatment of FLT3-mutant AML. Cancer Res; 74(18); 5206-17. Ó2014 AACR.
Synlett, 2012
... Yield of deblocked peptide, 48%; purity, 93% (HPLC). (26) Akaji, Kuriyama, and Kiso have made... more ... Yield of deblocked peptide, 48%; purity, 93% (HPLC). (26) Akaji, Kuriyama, and Kiso have made use of HOAt as additive in connection with the use of DCIH as a coupling reagent for hindered systems. See ref 13. (27) Carpino, L. A.; El-Faham, A. J. Org. Chem. 1994, 59, 695. ...
The Journal of Thoracic and Cardiovascular Surgery, 2014
Systemic inflammatory responses are a major cause of morbidity and mortality in patients undergoi... more Systemic inflammatory responses are a major cause of morbidity and mortality in patients undergoing cardiac surgery with cardiopulmonary bypass. However, the underlying molecular mechanisms for systemic inflammation in response to cardiopulmonary bypass are poorly understood. A porcine model was established to study the signaling pathways that promote systemic inflammation in response to cardiac surgery with cardiopulmonary bypass under well-controlled experimental conditions. The influence of sulforaphane, an anti-inflammatory compound derived from green vegetables, on inflammation and injury in response to cardiopulmonary bypass was also studied. Intracellular staining and flow cytometry were performed to measure phosphorylation of p38 mitogen-activated protein kinase and the transcription factor nuclear factor-κB in granulocytes and mononuclear cells. Surgery with cardiopulmonary bypass for 1 to 2 hours enhanced phosphorylation of p38 (2.5-fold) and nuclear factor-κB (1.6-fold) in circulating mononuclear cells. Cardiopulmonary bypass also modified granulocytes by activating nuclear factor-κB (1.6-fold), whereas p38 was not altered. Histologic analyses revealed that cardiopulmonary bypass promoted acute tubular necrosis. Pretreatment of animals with sulforaphane reduced p38 (90% reduction) and nuclear factor-κB (50% reduction) phosphorylation in leukocytes and protected kidneys from injury. Systemic inflammatory responses after cardiopulmonary bypass were associated with activation of p38 and nuclear factor-κB pathways in circulating leukocytes. Inflammatory responses to cardiopulmonary bypass can be reduced by sulforaphane, which reduced leukocyte activation and protected against renal injury.
Eukaryotic Cell, 2014
Conditional gene silencing by RNA interference in Trypanosoma brucei can be inconclusive if knock... more Conditional gene silencing by RNA interference in Trypanosoma brucei can be inconclusive if knockdowns are inefficient or have off-target effects. To enable efficient, specific silencing of single-copy genes in mammalian-infective, bloodstream form trypanosomes, we developed a system that targets the heterologous and functional Trypanosoma cruzi U2AF35 3= untranslated region (UTR) (Tc3) or, alternatively, the sequence of the PTP tag, which can be fused to any mRNA of interest. Two cell lines were created, single-marker Tc3 (smTc3) and smPTP, which conditionally express Tc3 and PTP double-stranded RNA (dsRNA), respectively. The system depends on manipulating both alleles of the gene of interest so that cells exclusively express the target mRNA as a fusion to one of these heterologous sequences. We generated allele integration vectors in which the C-terminal part of a gene's coding sequence can be fused to either heterologous sequence in a single cloning step. We first tested this system with CITFA7, which encodes a well-characterized subunit of the class I transcription factor A (CITFA), an essential factor for transcription initiation by RNA polymerase I. Targeting either Tc3 or PTP fused to the CITFA7 mRNA resulted in gene knockdowns that were as efficient and specific as targeting the endogenous CITFA7 mRNA. Moreover, application of this system to CITFA1, which could not be silenced by established methods, demonstrated that the gene encodes an essential CITFA subunit that mediates binding of the transcription factor complex to RNA polymerase I promoters.
Bioorganic & Medicinal Chemistry Letters, 2009
Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using ... more Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell-and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 9-oxo-9H-fluorene ring a b s t r a c t As a continuation of our studies of apoptosis inducing 9-oxo-9H-fluorene-1-carboxamides as potential anticancer agents, we explored modification of the 9-oxo-9H-fluorene ring. SAR studies showed that most changes to the 9-oxo-9H-fluorene ring were not well tolerated, except the 9H-fluorene (2b) and dibenzothiophene (2d) analogs, which were about twofold less active than the 9-oxo-9H-fluorene analog 2a. Significantly, introduction of substitutions at the 7-position of the 9-oxo-9H-fluorene ring led to compounds 5a-5c with improved activity. Compound 5a was found to have EC 50 values of 0.15-0.29 lM
As a continuation of our efforts to discover and develop the apoptosis inducing 4-anilino-2-(2-py... more As a continuation of our efforts to discover and develop the apoptosis inducing 4-anilino-2-(2-pyridyl)pyrimidines as potential anticancer agents, we explored replacing the 2-pyridyl group by other aryl groups. SAR studies showed that the 2-pyridyl group can be replaced by a 3-pyridyl, 4-pyridyl and 2-pyrazinyl group, and that the SAR for the anilino group was similar to that of the 2-pyridyl series. However, replacement of the 2-pyridyl group by a phenyl group, a 3,5-dichloro-4-pyridyl group, or a saturated ring led to inactive compounds. Several potent compounds, including 2f, 3d, 3j and 4a, with EC 50 values of 0.048-0.024 lM in the apoptosis induction assay against T47D cells, were identified through the SAR studies. In a tubulin polymerization assay, compound 2f, which was active against all the three cell lines tested (T47D, HTC116 and SNU398), inhibited tubulin polymerization with an IC 50 value of 0.5 lM, while compound 2a, which was active against T47D cells but not active against HTC116 and SNU398 cells, was not active in the tubulin assay at up to 50 lM.
Molecular cell, 2006
The interaction between the amino-terminal transactivation domain (TAD) of p53 and TFIIH is direc... more The interaction between the amino-terminal transactivation domain (TAD) of p53 and TFIIH is directly correlated with the ability of p53 to activate both transcription initiation and elongation. We have identified a region within the p53 TAD that specifically interacts with the pleckstrin homology (PH) domain of the p62 and Tfb1 subunits of human and yeast TFIIH. We have solved the 3D structure of a complex between the p53 TAD and the PH domain of Tfb1 by NMR spectroscopy. Our structure reveals that p53 forms a nine residue amphipathic a helix (residues 47-55) upon binding to Tfb1. In addition, we demonstrate that diphosphorylation of p53 at Ser46 and Thr55 leads to a significant enhancement in p53 binding to p62 and Tfb1. These results indicate that a phosphorylation cascade involving Ser46 and Thr55 of p53 could play an important role in the regulation of select p53 target genes.
FCP1, a phosphatase specific for the carboxyl-terminal domain of the largest subunit of RNA polym... more FCP1, a phosphatase specific for the carboxyl-terminal domain of the largest subunit of RNA polymerase II, is regulated by the HIV-1 Tat protein, CK2, TFIIB, and the large subunit of TFIIF (RAP74). We have characterized the interactions of Tat and RAP74 with the BRCT-containing central domain of ). We demonstrated that FCP1 is required for Tat-mediated transactivation in vitro and that amino acids 562-685 of FCP1 are necessary for Tat interaction in yeast two-hybrid studies. From sequence alignments, we identified a conserved acidic/hydrophobic region in FCP1 adjacent to its highly conserved BRCT domain. In vitro binding studies with purified proteins indicate that HIV-1 Tat interacts with both the acidic/hydrophobic region and the BRCT domain of FCP1, whereas RAP74 436-517 interacts solely with a portion of the acidic/hydrophobic region containing a conserved LXXLL-like motif. HIV-1 Tat inhibits the binding of RAP74 436-517 to FCP1. In a companion paper (K. Abbott et al. Enhanced Binding of RNAPII CTD Phosphatase FCP1 to RAP74 Following CK2 Phosphorylation, Biochemistry 44, 2732-2745, we identified a novel CK2 site adjacent to this conserved LXXLL-like motif. Phosphorylation of FCP1 562-619 by CK2 at this site increases binding to RAP74 436-517 , but this phosphorylation is inhibited by Tat. Our results provide insights into the mechanisms by which Tat inhibits the FCP1 CTD phosphatase activity and by which FCP1 mediates transcriptional activation by Tat. In addition to increasing our understanding of the role of HIV-1 Tat in transcriptional regulation, this study defines a clear role for regions adjacent to the BRCT domain in promoting important protein-protein interactions.