Bernard Bercu - Academia.edu (original) (raw)
Related Authors
Institut National de Recherche en Informatique et Automatique (INRIA)
Uploads
Papers by Bernard Bercu
Abstract. We investigate the asymptotic behavior of the Nadaraya-Watson esti-mator for the estima... more Abstract. We investigate the asymptotic behavior of the Nadaraya-Watson esti-mator for the estimation of the regression function in a semiparametric regression model. On the one hand, we make use of the recursive version of the sliced inverse regression method for the estimation of the unknown parameter of the model. On the other hand, we implement a recursive Nadaraya-Watson procedure for the estimation of the regression function which takes into account the previous esti-mation of the parameter of the semiparametric regression model. We establish the almost sure convergence as well as the asymptotic normality for our Nadaraya-Watson estimator. We also illustrate our semiparametric estimation procedure on simulated data. 1.
Comptes Rendus De L Academie Des Sciences Serie 1 Mathematique, 1996
On montre un principe de grandes deviations pour des formes quadratiques de Toeplitz de processus... more On montre un principe de grandes deviations pour des formes quadratiques de Toeplitz de processus gaussiens stationnaires centres. La fonction de taux s'obtient par la methode MEM (maximum d'entropie sur la moyenne) et par une etude fine du comportement des valeurs propres d'un produit de deux matrices de Toeplitz.
The Annals of Probability, 2002
ESAIM: Probability and Statistics, 2013
Journal of the Korean Statistical Society, 2012
We study the asymptotic behavior of the least squares estimators of the unknown parameters of gen... more We study the asymptotic behavior of the least squares estimators of the unknown parameters of general pth-order bifurcating autoregressive processes. Under very weak assumptions on the driven noise of the process, namely conditional pair-wise independence and suitable moment conditions, we establish the almost sure convergence of our estimators together with the quadratic strong law and the central limit theorem. All our analysis relies on non-standard asymptotic results for martingales.
In this paper, we obtain a large deviation principle for quadratic forms of Gaussian stationary p... more In this paper, we obtain a large deviation principle for quadratic forms of Gaussian stationary processes. It is established by the conjunction of a result of Roch and Silbermann on the spectrum of products of Toeplitz matrices together with the analysis of large deviations carried out by Gamboa, Rouault and the first author. An alternative proof of the needed result on Toeplitz matrices, based on semi-classical analysis, is also provided. Keywords Large deviations • Gaussian processes • Toeplitz matrices • Distribution of eigenvalues Pn(x 0 , x 1 , x 2 ,. . .
Statistics, 2014
We investigate the asymptotic behaviour of the recursive Nadaraya-Watson estimator for the estima... more We investigate the asymptotic behaviour of the recursive Nadaraya-Watson estimator for the estimation of the regression function in a semiparametric regression model. On the one hand, we make use of the recursive version of the sliced inverse regression method for the estimation of the unknown parameter of the model. On the other hand, we implement a recursive Nadaraya-Watson procedure for the estimation of the regression function which takes into account the previous estimation of the parameter of the semiparametric regression model. We establish the almost sure convergence as well as the asymptotic normality for our Nadaraya-Watson estimate. We also illustrate our semiparametric estimation procedure on simulated data.
Abstract. We investigate the asymptotic behavior of the Nadaraya-Watson esti-mator for the estima... more Abstract. We investigate the asymptotic behavior of the Nadaraya-Watson esti-mator for the estimation of the regression function in a semiparametric regression model. On the one hand, we make use of the recursive version of the sliced inverse regression method for the estimation of the unknown parameter of the model. On the other hand, we implement a recursive Nadaraya-Watson procedure for the estimation of the regression function which takes into account the previous esti-mation of the parameter of the semiparametric regression model. We establish the almost sure convergence as well as the asymptotic normality for our Nadaraya-Watson estimator. We also illustrate our semiparametric estimation procedure on simulated data. 1.
Comptes Rendus De L Academie Des Sciences Serie 1 Mathematique, 1996
On montre un principe de grandes deviations pour des formes quadratiques de Toeplitz de processus... more On montre un principe de grandes deviations pour des formes quadratiques de Toeplitz de processus gaussiens stationnaires centres. La fonction de taux s'obtient par la methode MEM (maximum d'entropie sur la moyenne) et par une etude fine du comportement des valeurs propres d'un produit de deux matrices de Toeplitz.
The Annals of Probability, 2002
ESAIM: Probability and Statistics, 2013
Journal of the Korean Statistical Society, 2012
We study the asymptotic behavior of the least squares estimators of the unknown parameters of gen... more We study the asymptotic behavior of the least squares estimators of the unknown parameters of general pth-order bifurcating autoregressive processes. Under very weak assumptions on the driven noise of the process, namely conditional pair-wise independence and suitable moment conditions, we establish the almost sure convergence of our estimators together with the quadratic strong law and the central limit theorem. All our analysis relies on non-standard asymptotic results for martingales.
In this paper, we obtain a large deviation principle for quadratic forms of Gaussian stationary p... more In this paper, we obtain a large deviation principle for quadratic forms of Gaussian stationary processes. It is established by the conjunction of a result of Roch and Silbermann on the spectrum of products of Toeplitz matrices together with the analysis of large deviations carried out by Gamboa, Rouault and the first author. An alternative proof of the needed result on Toeplitz matrices, based on semi-classical analysis, is also provided. Keywords Large deviations • Gaussian processes • Toeplitz matrices • Distribution of eigenvalues Pn(x 0 , x 1 , x 2 ,. . .
Statistics, 2014
We investigate the asymptotic behaviour of the recursive Nadaraya-Watson estimator for the estima... more We investigate the asymptotic behaviour of the recursive Nadaraya-Watson estimator for the estimation of the regression function in a semiparametric regression model. On the one hand, we make use of the recursive version of the sliced inverse regression method for the estimation of the unknown parameter of the model. On the other hand, we implement a recursive Nadaraya-Watson procedure for the estimation of the regression function which takes into account the previous estimation of the parameter of the semiparametric regression model. We establish the almost sure convergence as well as the asymptotic normality for our Nadaraya-Watson estimate. We also illustrate our semiparametric estimation procedure on simulated data.