Biljana Marjanovic-Painter - Academia.edu (original) (raw)

Uploads

Papers by Biljana Marjanovic-Painter

Research paper thumbnail of Development of a Single Vial Kit Solution for Radiolabeling of 68Ga-DKFZ-PSMA-11 and Its Performance in Prostate Cancer Patients

Molecules

Prostate-specific membrane antigen (PSMA), a type II glycoprotein, is highly expressed in almost ... more Prostate-specific membrane antigen (PSMA), a type II glycoprotein, is highly expressed in almost all prostate cancers. By playing such a universal role in the disease, PSMA provides a target for diagnostic imaging of prostate cancer using positron emission tomography/computed tomography (PET/CT). The PSMA-targeting ligand Glu-NH-CO-NH-Lys-(Ahx)-HBED-CC (DKFZ-PSMA-11) has superior imaging properties and allows for highly-specific complexation of the generator-based radioisotope Gallium-68 ( 68 Ga). However, only module-based radiolabeling procedures are currently available. This study intended to develop a single vial kit solution to radiolabel buffered DKFZ-PSMA-11 with

Research paper thumbnail of Synthesis, 68 Ga-Radiolabeling, and Preliminary In Vivo Assessment of a Depsipeptide-Derived Compound as a Potential PET/CT Infection Imaging Agent

BioMed Research International, 2015

Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease proc... more Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease processes, such as infections. An alarming shortage of infection-selective radiopharmaceuticals exists for overcoming the diagnostic limitations with unspecific tracers such as 67/68 Ga-citrate or 18 F-FDG. We report here TBIA101, an antimicrobial peptide derivative that was conjugated to DOTA and radiolabeled with 68 Ga for a subsequent in vitro assessment and in vivo infection imaging using Escherichia coli-bearing mice by targeting bacterial lipopolysaccharides with PET/CT. Following DOTA-conjugation, the compound was verified for its cytotoxic and bacterial binding behaviour and compound stability, followed by 68 Gallium-radiolabeling. PET/CT using 68 Ga-DOTA-TBIA101 was employed to detect muscular E. coli-infection in BALB/c mice, as warranted by the in vitro results. 68 Ga-DOTA-TBIA101-PET detected E. coli-infected muscle tissue (SUV = 1.3-2.4) >noninfected thighs ( = 0.322) > forearm muscles ( = 0.092) > background ( = 0.021) in the same animal. Normalization of the infected thigh muscle to reference tissue showed a ratio of 3.0 ± 0.8 and a ratio of 2.3 ± 0.6 compared to the identical healthy tissue. The majority of the activity was cleared by renal excretion. The latter findings warrant further preclinical imaging studies of greater depth, as the DOTA-conjugation did not compromise the TBIA101's capacity as targeting vector.

Research paper thumbnail of Peptide synthesis, characterization and ⁶⁸Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT

Nuclear medicine and biology

Human antimicrobial peptides are of interest for the development of positron emission tomography ... more Human antimicrobial peptides are of interest for the development of positron emission tomography (PET) tracers as they exhibit desirable characteristics that make them good candidates for targeting vectors. Due to their natural role in the innate immune system they selectively bind to pathogenic bacteria and yeast, whilst remaining minimally immunogenic and cytotoxic to humans. Research into ubiquicidin (UBI)-based tracers has focused on (99m)Tc as a radionuclide, however, the use of bi-functional chelators such as 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), in combination with ⁶⁸Ga as a radionuclide, allows for a simple radiolabeling procedure which is preferable in a clinical setting using PET/CT. The peptides fragments UBI29-41, UBI30-41 were synthesized by standard microwave Fmoc/tert-butyl (tBu)-solid phase synthetic protocols. Characterizations were performed using analytical HPLC and LC/MS. Both NOTA-conjugated peptides were exposed to (nat)Ga³⁺; their complexed form...

Research paper thumbnail of Biodistribution and dosimetry of 195mPt-cisplatin in normal volunteers

Nuklearmedizin, 2013

195mPt-cisplatin is regarded as a promising imaging agent for optimizing dosage in patients recei... more 195mPt-cisplatin is regarded as a promising imaging agent for optimizing dosage in patients receiving cisplatin chemotherapy. We investigated the whole-body distribution and radiation dosimetry of 195mPt-cisplatin in humans. Whole-body scans were obtained up to 144 h after intravenous injection of 112.4 MBq 195mPt-cisplatin in each of five subjects. Blood samples were taken at various times up to 144 h after injection. Urine was collected up to 114 h after injection for calculation of renal clearance and whole-body clearance. Time/activity curves were generated by fitting the organ-specific geometric mean counts, obtained from regions of interest, on the respective images as a function of the time after injection. OLINDA software package was applied to calculate the absorbed radiation dose for various organs. Most of the activity (32 ± 4%) was excreted in the urine during the first 5 h. The effective clearance half-life derived from extrapolation of the whole-body curve was 40 hours (1.7 days). On average, the highest dose was received by the kidneys (mean dose received 2.68 ± 1.5 mGy/MBq), followed by the spleen (mean dose received 1.6 ± 0.8 mGy/MBq) followed by the liver (mean dose received 1.45 ± 0.38 mGy/MBq). The estimated mean effective dose for the adult subject was 0.185 ± 0.034 mSv/MBq. 195mPt-cisplatin proved a safe radiopharmaceutical with a favourable biodistribution for early and delayed imaging of pathology above the diaphragm. The ED obtained was 0.185 ± 0.034 mSv/MBq. The highest organ dose was received by the kidneys (2.68 ± 1.5 mGy/MBq).

Research paper thumbnail of Production of high specific activity 195m Pt-cisplatinum at South African Nuclear Energy Corporation for Phase 0 clinical trials in healthy individual subjects

Journal of Labelled Compounds and Radiopharmaceuticals, 2013

Platinum agents continue to be the main chemotherapeutic agents used in the first-line and second... more Platinum agents continue to be the main chemotherapeutic agents used in the first-line and second-line treatments of cancer patients. It is important to fully understand the biological profile of these compounds in order to optimize the dose given to each patient. In a joint project with the Australian Nuclear Science and Technology Organisation and the Nuclear Medicine Department at Steve Biko Academic Hospital, South African Nuclear Energy Corporation synthesized and supplied (195m) Pt-cisplatinum (commonly referred to as cisplatin) for a clinical pilot study on healthy volunteers. Enriched (194) PtCl2 was prepared by digestion of enriched (194) Pt metal (>95%) followed by thermal decomposition over a 3 h period. The (194) PtCl2 was then placed in a quartz ampoule, was irradiated in SAFARI-1 up to 200 h, then decay cooled for a minimum of 34 h prior to synthesis of final product. (195m) Pt(NH3 )2 I2 , formed with the addition of KI and NH4 OH, was converted to the diaqua species [(195m) Pt(NH3 )2 (H2 O)2 ](2+) by reaction with AgNO3 . The conversion to (195m) Pt-cisplatinum was completed by the addition of concentrated HCl. The final product yield was 51.7% ± 5.2% (n = 5). The chemical and radionuclidic purity in each case was >95%. The use of a high flux reactor position affords a higher specific activity product (15.9 ± 2.5 MBq/mg at end of synthesis) than previously found (5 MBq/mg). Volunteers received between 108 and 126 MBq of radioactivity, which is equivalent to 6.8-10.0 mg of carrier cisplatinum. Such high specific activities afforded a significant reduction (~50%) in the chemical dose of a carrier cisplatinum, which represents less than 10% of a typical chemotherapeutic dose given to patients. A good manufacturing practice GMP compliant product was produced and was administered to 10 healthy volunteers as part of an ethically approved Phase 0 clinical trial. The majority of the injected activity 27.5% ± 5.8% was excreted in the urine within 5 h post injection (p.i.). Only 8.5% ± 3.1% of cisplatinum remained in blood pools at 5 h, which gradually cleared over the 6-day monitoring period p.i. At the end of the study (6 days p.i.), a total of 37.4% ± 5.3% of the product had cleared from the blood into urine, and approximately 63% remained in the body. The significantly lower concentration of carrier cisplatinum used for imaging resulted in a well-tolerated product.

Research paper thumbnail of Biodistribution (as determined by the radiolabelled equivalent) of a gold(III) bis(pyrrolide-imine) Schiff base complex: a potential chemotherapeutic

Journal of Labelled Compounds and Radiopharmaceuticals, 2013

The biodistribution of an N2 N2 &... more The biodistribution of an N2 N2 ' tetradentate gold(III) chelate, which is known to be cytotoxic towards a range of human cancer cell lines, was determined by a radiolabelled equivalent of the compound. The (198) Au-labelled gold(III) chelate of a bis(pyrrolide-imine) Schiff base ligand with a three-carbon di(azomethine) linkage was successfully synthesised with a high radiochemical yield of 73% and radiochemical purity of >95%. The high energy γ-ray emitted by the (198) Au nucleus was used to follow the biodistribution of the compound in vivo in six male Sprague Dawley rats on a gamma camera. The log Po/w value of the (nat) Au analogue, -1.92(2), showed that the compound is hydrophilic and therefore likely to largely remain in the blood pool. This was confirmed by the biodistribution study, which showed 21% of the injected dose (ID) remained in the blood pool 4.5 h after injection. This decreased to 10.8% over a 24-h period. The activity measured in the lungs, 1.48%ID/g, remained relatively constant over a 24-h period suggesting that the complex had accumulated in the lungs in the form of particulates, and could not be cleared by the test subjects. The t½ for the heart and lungs was greater than 24 h. Excretion of the test compound is seemingly via the kidneys, but is slow with approximately 30% of the ID excreted within 24 h.

Research paper thumbnail of Synthesis of I-131 labelled 4-iodophenylacetic acid

Journal of Labelled Compounds and Radiopharmaceuticals, 2011

Phenylacetate has been reported to have a potent anti-proliferative and anti-differentiating effe... more Phenylacetate has been reported to have a potent anti-proliferative and anti-differentiating effect in haematological malignancies and in solid tumours at non-toxic concentrations. This study is a preliminary investigation into the potential of 4-iodophenylacetic acid radiolabelled by 131 I as a radiopharmaceutical equivalent. The radiolabelling by isotope exchange gave a radiochemical yield of 5376%, and a radiochemical purity of 97.871.2% as qualified by HPLC. The product contained 4% ester by-product and is suitable for studies in animals.

Research paper thumbnail of Carbon-14 radiolabeling and in vivo biodistribution of a potential anti-TB compound

Journal of Labelled Compounds and Radiopharmaceuticals, 2015

A potential anti-TB compound bearing a nitroimidazole moiety from iThemba Pharmaceuticals TB chem... more A potential anti-TB compound bearing a nitroimidazole moiety from iThemba Pharmaceuticals TB chemical library exhibits promising in vitro activity in the microplate almar blue assay (MABA) with a minimum inhibitory concentration (MIC) value of 3 µg/mL. It is equipotent to the front-line drug Isoniazid, but the compound is less toxic with an IC50 of >100 µg/mL. Therefore, this potential iThemba nitroimidazole, 4-([1,1'-[(14)C6]biphenyl]-4-ylmethyl)-9-nitro-3,4,5,6-tetrahydro-2H-imidazo[2,1-b][1,3,6]oxadiazocine, was radiolabeled with the C-14 isotope. The synthesis of the (14)C-labeled nitroimidazole was accomplished in seven steps from diethanolamine with a final specific radioactivity of 3.552 GBq/mmol, a radiochemical yield of 87%, and a radiochemical purity of ≥96%. The source of the C-14 radiolabel was bromobenzene which was introduced by the Suzuki-Miyaura reaction. Tissue distribution results showed that the radiotracer has a high accumulation in the lungs of TB-infected mice, statistically significantly higher than in healthy mice. However, the clearance (for both TB-infected and non-TB-infected mice) from all organs (except the small intestine) from 1 to 2 h as well as the low percentage of injected dose per gram values achieved indicates breakdown of the compound in vivo and subsequent clearance from the body. The latter suggests that the compound might not be useful as an anti-TB drug in humans.

Research paper thumbnail of Development of a Single Vial Kit Solution for Radiolabeling of 68Ga-DKFZ-PSMA-11 and Its Performance in Prostate Cancer Patients

Molecules

Prostate-specific membrane antigen (PSMA), a type II glycoprotein, is highly expressed in almost ... more Prostate-specific membrane antigen (PSMA), a type II glycoprotein, is highly expressed in almost all prostate cancers. By playing such a universal role in the disease, PSMA provides a target for diagnostic imaging of prostate cancer using positron emission tomography/computed tomography (PET/CT). The PSMA-targeting ligand Glu-NH-CO-NH-Lys-(Ahx)-HBED-CC (DKFZ-PSMA-11) has superior imaging properties and allows for highly-specific complexation of the generator-based radioisotope Gallium-68 ( 68 Ga). However, only module-based radiolabeling procedures are currently available. This study intended to develop a single vial kit solution to radiolabel buffered DKFZ-PSMA-11 with

Research paper thumbnail of Synthesis, 68 Ga-Radiolabeling, and Preliminary In Vivo Assessment of a Depsipeptide-Derived Compound as a Potential PET/CT Infection Imaging Agent

BioMed Research International, 2015

Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease proc... more Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease processes, such as infections. An alarming shortage of infection-selective radiopharmaceuticals exists for overcoming the diagnostic limitations with unspecific tracers such as 67/68 Ga-citrate or 18 F-FDG. We report here TBIA101, an antimicrobial peptide derivative that was conjugated to DOTA and radiolabeled with 68 Ga for a subsequent in vitro assessment and in vivo infection imaging using Escherichia coli-bearing mice by targeting bacterial lipopolysaccharides with PET/CT. Following DOTA-conjugation, the compound was verified for its cytotoxic and bacterial binding behaviour and compound stability, followed by 68 Gallium-radiolabeling. PET/CT using 68 Ga-DOTA-TBIA101 was employed to detect muscular E. coli-infection in BALB/c mice, as warranted by the in vitro results. 68 Ga-DOTA-TBIA101-PET detected E. coli-infected muscle tissue (SUV = 1.3-2.4) >noninfected thighs ( = 0.322) > forearm muscles ( = 0.092) > background ( = 0.021) in the same animal. Normalization of the infected thigh muscle to reference tissue showed a ratio of 3.0 ± 0.8 and a ratio of 2.3 ± 0.6 compared to the identical healthy tissue. The majority of the activity was cleared by renal excretion. The latter findings warrant further preclinical imaging studies of greater depth, as the DOTA-conjugation did not compromise the TBIA101's capacity as targeting vector.

Research paper thumbnail of Peptide synthesis, characterization and ⁶⁸Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT

Nuclear medicine and biology

Human antimicrobial peptides are of interest for the development of positron emission tomography ... more Human antimicrobial peptides are of interest for the development of positron emission tomography (PET) tracers as they exhibit desirable characteristics that make them good candidates for targeting vectors. Due to their natural role in the innate immune system they selectively bind to pathogenic bacteria and yeast, whilst remaining minimally immunogenic and cytotoxic to humans. Research into ubiquicidin (UBI)-based tracers has focused on (99m)Tc as a radionuclide, however, the use of bi-functional chelators such as 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), in combination with ⁶⁸Ga as a radionuclide, allows for a simple radiolabeling procedure which is preferable in a clinical setting using PET/CT. The peptides fragments UBI29-41, UBI30-41 were synthesized by standard microwave Fmoc/tert-butyl (tBu)-solid phase synthetic protocols. Characterizations were performed using analytical HPLC and LC/MS. Both NOTA-conjugated peptides were exposed to (nat)Ga³⁺; their complexed form...

Research paper thumbnail of Biodistribution and dosimetry of 195mPt-cisplatin in normal volunteers

Nuklearmedizin, 2013

195mPt-cisplatin is regarded as a promising imaging agent for optimizing dosage in patients recei... more 195mPt-cisplatin is regarded as a promising imaging agent for optimizing dosage in patients receiving cisplatin chemotherapy. We investigated the whole-body distribution and radiation dosimetry of 195mPt-cisplatin in humans. Whole-body scans were obtained up to 144 h after intravenous injection of 112.4 MBq 195mPt-cisplatin in each of five subjects. Blood samples were taken at various times up to 144 h after injection. Urine was collected up to 114 h after injection for calculation of renal clearance and whole-body clearance. Time/activity curves were generated by fitting the organ-specific geometric mean counts, obtained from regions of interest, on the respective images as a function of the time after injection. OLINDA software package was applied to calculate the absorbed radiation dose for various organs. Most of the activity (32 ± 4%) was excreted in the urine during the first 5 h. The effective clearance half-life derived from extrapolation of the whole-body curve was 40 hours (1.7 days). On average, the highest dose was received by the kidneys (mean dose received 2.68 ± 1.5 mGy/MBq), followed by the spleen (mean dose received 1.6 ± 0.8 mGy/MBq) followed by the liver (mean dose received 1.45 ± 0.38 mGy/MBq). The estimated mean effective dose for the adult subject was 0.185 ± 0.034 mSv/MBq. 195mPt-cisplatin proved a safe radiopharmaceutical with a favourable biodistribution for early and delayed imaging of pathology above the diaphragm. The ED obtained was 0.185 ± 0.034 mSv/MBq. The highest organ dose was received by the kidneys (2.68 ± 1.5 mGy/MBq).

Research paper thumbnail of Production of high specific activity 195m Pt-cisplatinum at South African Nuclear Energy Corporation for Phase 0 clinical trials in healthy individual subjects

Journal of Labelled Compounds and Radiopharmaceuticals, 2013

Platinum agents continue to be the main chemotherapeutic agents used in the first-line and second... more Platinum agents continue to be the main chemotherapeutic agents used in the first-line and second-line treatments of cancer patients. It is important to fully understand the biological profile of these compounds in order to optimize the dose given to each patient. In a joint project with the Australian Nuclear Science and Technology Organisation and the Nuclear Medicine Department at Steve Biko Academic Hospital, South African Nuclear Energy Corporation synthesized and supplied (195m) Pt-cisplatinum (commonly referred to as cisplatin) for a clinical pilot study on healthy volunteers. Enriched (194) PtCl2 was prepared by digestion of enriched (194) Pt metal (>95%) followed by thermal decomposition over a 3 h period. The (194) PtCl2 was then placed in a quartz ampoule, was irradiated in SAFARI-1 up to 200 h, then decay cooled for a minimum of 34 h prior to synthesis of final product. (195m) Pt(NH3 )2 I2 , formed with the addition of KI and NH4 OH, was converted to the diaqua species [(195m) Pt(NH3 )2 (H2 O)2 ](2+) by reaction with AgNO3 . The conversion to (195m) Pt-cisplatinum was completed by the addition of concentrated HCl. The final product yield was 51.7% ± 5.2% (n = 5). The chemical and radionuclidic purity in each case was >95%. The use of a high flux reactor position affords a higher specific activity product (15.9 ± 2.5 MBq/mg at end of synthesis) than previously found (5 MBq/mg). Volunteers received between 108 and 126 MBq of radioactivity, which is equivalent to 6.8-10.0 mg of carrier cisplatinum. Such high specific activities afforded a significant reduction (~50%) in the chemical dose of a carrier cisplatinum, which represents less than 10% of a typical chemotherapeutic dose given to patients. A good manufacturing practice GMP compliant product was produced and was administered to 10 healthy volunteers as part of an ethically approved Phase 0 clinical trial. The majority of the injected activity 27.5% ± 5.8% was excreted in the urine within 5 h post injection (p.i.). Only 8.5% ± 3.1% of cisplatinum remained in blood pools at 5 h, which gradually cleared over the 6-day monitoring period p.i. At the end of the study (6 days p.i.), a total of 37.4% ± 5.3% of the product had cleared from the blood into urine, and approximately 63% remained in the body. The significantly lower concentration of carrier cisplatinum used for imaging resulted in a well-tolerated product.

Research paper thumbnail of Biodistribution (as determined by the radiolabelled equivalent) of a gold(III) bis(pyrrolide-imine) Schiff base complex: a potential chemotherapeutic

Journal of Labelled Compounds and Radiopharmaceuticals, 2013

The biodistribution of an N2 N2 &... more The biodistribution of an N2 N2 ' tetradentate gold(III) chelate, which is known to be cytotoxic towards a range of human cancer cell lines, was determined by a radiolabelled equivalent of the compound. The (198) Au-labelled gold(III) chelate of a bis(pyrrolide-imine) Schiff base ligand with a three-carbon di(azomethine) linkage was successfully synthesised with a high radiochemical yield of 73% and radiochemical purity of >95%. The high energy γ-ray emitted by the (198) Au nucleus was used to follow the biodistribution of the compound in vivo in six male Sprague Dawley rats on a gamma camera. The log Po/w value of the (nat) Au analogue, -1.92(2), showed that the compound is hydrophilic and therefore likely to largely remain in the blood pool. This was confirmed by the biodistribution study, which showed 21% of the injected dose (ID) remained in the blood pool 4.5 h after injection. This decreased to 10.8% over a 24-h period. The activity measured in the lungs, 1.48%ID/g, remained relatively constant over a 24-h period suggesting that the complex had accumulated in the lungs in the form of particulates, and could not be cleared by the test subjects. The t½ for the heart and lungs was greater than 24 h. Excretion of the test compound is seemingly via the kidneys, but is slow with approximately 30% of the ID excreted within 24 h.

Research paper thumbnail of Synthesis of I-131 labelled 4-iodophenylacetic acid

Journal of Labelled Compounds and Radiopharmaceuticals, 2011

Phenylacetate has been reported to have a potent anti-proliferative and anti-differentiating effe... more Phenylacetate has been reported to have a potent anti-proliferative and anti-differentiating effect in haematological malignancies and in solid tumours at non-toxic concentrations. This study is a preliminary investigation into the potential of 4-iodophenylacetic acid radiolabelled by 131 I as a radiopharmaceutical equivalent. The radiolabelling by isotope exchange gave a radiochemical yield of 5376%, and a radiochemical purity of 97.871.2% as qualified by HPLC. The product contained 4% ester by-product and is suitable for studies in animals.

Research paper thumbnail of Carbon-14 radiolabeling and in vivo biodistribution of a potential anti-TB compound

Journal of Labelled Compounds and Radiopharmaceuticals, 2015

A potential anti-TB compound bearing a nitroimidazole moiety from iThemba Pharmaceuticals TB chem... more A potential anti-TB compound bearing a nitroimidazole moiety from iThemba Pharmaceuticals TB chemical library exhibits promising in vitro activity in the microplate almar blue assay (MABA) with a minimum inhibitory concentration (MIC) value of 3 µg/mL. It is equipotent to the front-line drug Isoniazid, but the compound is less toxic with an IC50 of >100 µg/mL. Therefore, this potential iThemba nitroimidazole, 4-([1,1'-[(14)C6]biphenyl]-4-ylmethyl)-9-nitro-3,4,5,6-tetrahydro-2H-imidazo[2,1-b][1,3,6]oxadiazocine, was radiolabeled with the C-14 isotope. The synthesis of the (14)C-labeled nitroimidazole was accomplished in seven steps from diethanolamine with a final specific radioactivity of 3.552 GBq/mmol, a radiochemical yield of 87%, and a radiochemical purity of ≥96%. The source of the C-14 radiolabel was bromobenzene which was introduced by the Suzuki-Miyaura reaction. Tissue distribution results showed that the radiotracer has a high accumulation in the lungs of TB-infected mice, statistically significantly higher than in healthy mice. However, the clearance (for both TB-infected and non-TB-infected mice) from all organs (except the small intestine) from 1 to 2 h as well as the low percentage of injected dose per gram values achieved indicates breakdown of the compound in vivo and subsequent clearance from the body. The latter suggests that the compound might not be useful as an anti-TB drug in humans.