Biswajit Das - Academia.edu (original) (raw)

Papers by Biswajit Das

Research paper thumbnail of Controlling transgene expression to study Xenopus laevis metamorphosis

Proceedings of The National Academy of Sciences, 2004

Sperm-mediated transgenesis of Xenopus laevis is the first application of genetic methodology to ... more Sperm-mediated transgenesis of Xenopus laevis is the first application of genetic methodology to an amphibian. However, some transgenes are lethal when they are expressed constitutively. To study the influence of these genes on amphibian metamorphosis and to generate F 1 progeny from mature transgenic adults, these transgenes must be placed under the control of an inducible system so that they can be activated at specific times in development. We show that two well known binary inducible gene expression systems supplement transgenesis for the study of X. laevis metamorphosis, one system controlled by the progesterone analogue RU-486 and the other controlled by the tetracycline derivative doxycycline. By inducing a dominant negative form of the thyroid hormone receptor under the control of doxycycline specifically in the nervous system we have delimited the developmental periods within which thyroid hormone controls innervation of the developing limb from the spinal cord.

Research paper thumbnail of Changing a limb muscle growth program into a resorption program

Developmental Biology, 2007

Transgenic Xenopus laevis tadpoles that express a dominant negative form of the thyroid hormone r... more Transgenic Xenopus laevis tadpoles that express a dominant negative form of the thyroid hormone receptor (TRDN) controlled by the cardiac actin muscle promoter (pCar) develop with very little limb muscle. Under the control of the tetracycline system the transgene can be induced at will by adding doxycycline to the rearing water. Pre existing limb muscle fibers begins to disintegrate within 2 days after up-regulation of the TRDN transgene. The muscle cells do not die even after weeks of transgene exposure when the myofibrils have degenerated completely and the tadpole is nearing death. A micro array analysis after 2 weeks of exposure to the transgene identified 25 muscle genes whose expression was altered in such a way that they might cause the muscle phenotype. These candidate genes are normally activated in growing limb muscle but they are repressed by the TRDN transgene. Several of these genes have been implicated in mammalian myopathies. However, the expression of only one of these genes, calsequestrin, is down regulated in 48 hrs and therefore might initiate the degeneration. Calsequestrin is one of several affected genes that encode proteins involved in calcium sequestration, transport and utilization in muscle suggesting that uncontrolled calcium influx into the growing limb muscle fibers causes rhabdomyolysis. Many of the same genes that are down regulated in the tail at the peak of metamorphic climax just before it is resorbed are suppressed in the transgenic limb muscle in effect turning the limb growth program into a tail resorption program.

Research paper thumbnail of Thyroid hormone controls multiple independent programs required for limb development in Xenopus laevis metamorphosis

Proceedings of The National Academy of Sciences, 2005

Thyroid hormone (TH) is required for limb development in Xenopus laevis. Specific cell types in t... more Thyroid hormone (TH) is required for limb development in Xenopus laevis. Specific cell types in the growing limb were targeted for expression of a dominant negative form of the TH receptor by sperm-mediated transgenesis. Limb muscle development, the innervation of muscle from the spinal cord, and cartilage growth can be inhibited without affecting patterning of the limb or differentiation of other cell types. Remodeling of the skin occurs late in metamorphosis after the limb has formed. The coordination of these independent programs is affected in part by the control that TH exerts over DNA replication in all cell types of the limb.

Research paper thumbnail of Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles

Developmental Biology, 2006

Thyroid hormone (TH) controlled gene expression profiles have been studied in the tail, hind limb... more Thyroid hormone (TH) controlled gene expression profiles have been studied in the tail, hind limb and brain tissues during TH-induced and spontaneous Xenopus laevis metamorphosis. Amplified cRNA probes mixed with a universal standard were hybridized to a set of 21,807-sense strand 60-mer oligonucleotides on each slide representing the entries in X. laevis UniGene Build 48. Most of the up-regulated genes in hind limb and brain are the same. This reflects in part the fact that the initial response to TH induction in both tissues is cell proliferation. A large number of up-regulated genes in the limb and brain programs encode common components of the cell cycle, DNA and RNA metabolism, transcription and translation. Notch is one of the few genes that is differentially expressed exclusively in the brain in the first 48 h of TH induction studied in these experiments. The TH-induced gene expression changes in the tail are different from the limb and brain programs. Distinct muscle and fibroblast programs were identified in the tail. Dying muscle fibers in tail (marked by active caspase-3) up-regulate a group of genes that include proteolytic enzymes. At the climax of metamorphosis, tail muscle down-regulates more than half of the genes that encode the glycolytic enzymes in the cytoplasm and the tricarboxylic acid pathway and all five complexes of the electron transport system in mitochondria. These changes in gene expression precede the activation of caspase-3. Some of these same energy metabolism-related genes are up-regulated in the limb and brain programs by TH. A prominent feature of the tail fibroblasts is the down-regulation of several collagen and other extra cellular matrix genes and the up-regulation of hydrolytic enzymes that are responsible for dissolving the notochord and resorbing the tail.

Research paper thumbnail of Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis

Proceedings of The National Academy of Sciences, 2002

Xenopus laevis tadpole tails contain fast muscle fibers oriented in chevrons and two pairs of slo... more Xenopus laevis tadpole tails contain fast muscle fibers oriented in chevrons and two pairs of slow muscle ''cords'' along the length of the tail. When tail resorption is inhibited by a number of different treatments, fast muscle but not the slow cord muscle still is lost, demonstrating that the fast tail muscle is a direct target of the thyroid hormone-induced death program. Expression of a dominant negative form of the thyroid hormone receptor (TRDN␣) was restricted to tadpole muscle by means of a muscle-specific promoter. Even though the transgene protects fast tail muscle from thyroid hormone (TH)-induced death, the tail shortens, and the distal muscle chevrons at the tail tip are degraded. This default pathway for muscle death is probably caused by the action of proteolytic enzymes secreted by neighboring fibroblasts. Nonmuscle tissues that are sensitive to TH, such as the fibroblasts, are not protected by the transgene when it is expressed solely in muscle. If allowed to develop to metamorphosis, these transgenic animals die at the climax of metamorphosis before tail resorption has begun. Their limbs have very little muscle even though the rest of limb morphology is normal. Thus, fast tail muscle and limb muscle have their own cell autonomous death and growth programs, respectively, that are independent of the fate of the other neighboring cell types. In contrast, death of the slow muscle is controlled by the other cell types of the tail.

Research paper thumbnail of Capacitance-voltage characterization of thin film nanoporous alumina templates

Microelectronics Journal, 2006

This paper presents the results of capacitance-voltage characterization of thin film alumina temp... more This paper presents the results of capacitance-voltage characterization of thin film alumina templates fabricated on silicon substrates. Such templates are of significant interest for the low-cost implementation of semiconductor and metal nanostructure arrays, as well as for potential nanostructure integration with silicon electronics. Thin film alumina templates created on silicon substrates under different anodization conditions were investigated. Capacitance-voltage measurements indicate that the template/silicon interface, important for nanostructure integration on silicon, to be of good device quality. q

Research paper thumbnail of Controlling transgene expression to study Xenopus laevis metamorphosis

Proceedings of The National Academy of Sciences, 2004

Sperm-mediated transgenesis of Xenopus laevis is the first application of genetic methodology to ... more Sperm-mediated transgenesis of Xenopus laevis is the first application of genetic methodology to an amphibian. However, some transgenes are lethal when they are expressed constitutively. To study the influence of these genes on amphibian metamorphosis and to generate F 1 progeny from mature transgenic adults, these transgenes must be placed under the control of an inducible system so that they can be activated at specific times in development. We show that two well known binary inducible gene expression systems supplement transgenesis for the study of X. laevis metamorphosis, one system controlled by the progesterone analogue RU-486 and the other controlled by the tetracycline derivative doxycycline. By inducing a dominant negative form of the thyroid hormone receptor under the control of doxycycline specifically in the nervous system we have delimited the developmental periods within which thyroid hormone controls innervation of the developing limb from the spinal cord.

Research paper thumbnail of Changing a limb muscle growth program into a resorption program

Developmental Biology, 2007

Transgenic Xenopus laevis tadpoles that express a dominant negative form of the thyroid hormone r... more Transgenic Xenopus laevis tadpoles that express a dominant negative form of the thyroid hormone receptor (TRDN) controlled by the cardiac actin muscle promoter (pCar) develop with very little limb muscle. Under the control of the tetracycline system the transgene can be induced at will by adding doxycycline to the rearing water. Pre existing limb muscle fibers begins to disintegrate within 2 days after up-regulation of the TRDN transgene. The muscle cells do not die even after weeks of transgene exposure when the myofibrils have degenerated completely and the tadpole is nearing death. A micro array analysis after 2 weeks of exposure to the transgene identified 25 muscle genes whose expression was altered in such a way that they might cause the muscle phenotype. These candidate genes are normally activated in growing limb muscle but they are repressed by the TRDN transgene. Several of these genes have been implicated in mammalian myopathies. However, the expression of only one of these genes, calsequestrin, is down regulated in 48 hrs and therefore might initiate the degeneration. Calsequestrin is one of several affected genes that encode proteins involved in calcium sequestration, transport and utilization in muscle suggesting that uncontrolled calcium influx into the growing limb muscle fibers causes rhabdomyolysis. Many of the same genes that are down regulated in the tail at the peak of metamorphic climax just before it is resorbed are suppressed in the transgenic limb muscle in effect turning the limb growth program into a tail resorption program.

Research paper thumbnail of Thyroid hormone controls multiple independent programs required for limb development in Xenopus laevis metamorphosis

Proceedings of The National Academy of Sciences, 2005

Thyroid hormone (TH) is required for limb development in Xenopus laevis. Specific cell types in t... more Thyroid hormone (TH) is required for limb development in Xenopus laevis. Specific cell types in the growing limb were targeted for expression of a dominant negative form of the TH receptor by sperm-mediated transgenesis. Limb muscle development, the innervation of muscle from the spinal cord, and cartilage growth can be inhibited without affecting patterning of the limb or differentiation of other cell types. Remodeling of the skin occurs late in metamorphosis after the limb has formed. The coordination of these independent programs is affected in part by the control that TH exerts over DNA replication in all cell types of the limb.

Research paper thumbnail of Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles

Developmental Biology, 2006

Thyroid hormone (TH) controlled gene expression profiles have been studied in the tail, hind limb... more Thyroid hormone (TH) controlled gene expression profiles have been studied in the tail, hind limb and brain tissues during TH-induced and spontaneous Xenopus laevis metamorphosis. Amplified cRNA probes mixed with a universal standard were hybridized to a set of 21,807-sense strand 60-mer oligonucleotides on each slide representing the entries in X. laevis UniGene Build 48. Most of the up-regulated genes in hind limb and brain are the same. This reflects in part the fact that the initial response to TH induction in both tissues is cell proliferation. A large number of up-regulated genes in the limb and brain programs encode common components of the cell cycle, DNA and RNA metabolism, transcription and translation. Notch is one of the few genes that is differentially expressed exclusively in the brain in the first 48 h of TH induction studied in these experiments. The TH-induced gene expression changes in the tail are different from the limb and brain programs. Distinct muscle and fibroblast programs were identified in the tail. Dying muscle fibers in tail (marked by active caspase-3) up-regulate a group of genes that include proteolytic enzymes. At the climax of metamorphosis, tail muscle down-regulates more than half of the genes that encode the glycolytic enzymes in the cytoplasm and the tricarboxylic acid pathway and all five complexes of the electron transport system in mitochondria. These changes in gene expression precede the activation of caspase-3. Some of these same energy metabolism-related genes are up-regulated in the limb and brain programs by TH. A prominent feature of the tail fibroblasts is the down-regulation of several collagen and other extra cellular matrix genes and the up-regulation of hydrolytic enzymes that are responsible for dissolving the notochord and resorbing the tail.

Research paper thumbnail of Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis

Proceedings of The National Academy of Sciences, 2002

Xenopus laevis tadpole tails contain fast muscle fibers oriented in chevrons and two pairs of slo... more Xenopus laevis tadpole tails contain fast muscle fibers oriented in chevrons and two pairs of slow muscle ''cords'' along the length of the tail. When tail resorption is inhibited by a number of different treatments, fast muscle but not the slow cord muscle still is lost, demonstrating that the fast tail muscle is a direct target of the thyroid hormone-induced death program. Expression of a dominant negative form of the thyroid hormone receptor (TRDN␣) was restricted to tadpole muscle by means of a muscle-specific promoter. Even though the transgene protects fast tail muscle from thyroid hormone (TH)-induced death, the tail shortens, and the distal muscle chevrons at the tail tip are degraded. This default pathway for muscle death is probably caused by the action of proteolytic enzymes secreted by neighboring fibroblasts. Nonmuscle tissues that are sensitive to TH, such as the fibroblasts, are not protected by the transgene when it is expressed solely in muscle. If allowed to develop to metamorphosis, these transgenic animals die at the climax of metamorphosis before tail resorption has begun. Their limbs have very little muscle even though the rest of limb morphology is normal. Thus, fast tail muscle and limb muscle have their own cell autonomous death and growth programs, respectively, that are independent of the fate of the other neighboring cell types. In contrast, death of the slow muscle is controlled by the other cell types of the tail.

Research paper thumbnail of Capacitance-voltage characterization of thin film nanoporous alumina templates

Microelectronics Journal, 2006

This paper presents the results of capacitance-voltage characterization of thin film alumina temp... more This paper presents the results of capacitance-voltage characterization of thin film alumina templates fabricated on silicon substrates. Such templates are of significant interest for the low-cost implementation of semiconductor and metal nanostructure arrays, as well as for potential nanostructure integration with silicon electronics. Thin film alumina templates created on silicon substrates under different anodization conditions were investigated. Capacitance-voltage measurements indicate that the template/silicon interface, important for nanostructure integration on silicon, to be of good device quality. q