Brian Oliver - Academia.edu (original) (raw)

Related Authors

Fazlollah Ghofranipour

Pavel Uspenskij

Atiar Atique

Diana Silva

Faculdade de Medicina da Universidade do Porto

Shandee Dixon

Dimuth Siritunga

C. Markopoulos

Uploads

Papers by Brian Oliver

Research paper thumbnail of Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo

Respirology, 2011

A hallmark of asthma is airway remodelling, which includes increased deposition of extracellular ... more A hallmark of asthma is airway remodelling, which includes increased deposition of extracellular matrix (ECM) protein. Viral infections may promote the development of asthma and are the most common causes of asthma exacerbations. We evaluated whether rhinovirus (RV) infection induces airway remodelling, as assessed by ECM deposition. Primary human bronchial epithelial cells and lung parenchymal fibroblasts were infected with RV-2 or RV-16, or treated with RV-16 RNA, imiquimod (Toll-like receptor (TLR) 7/8 agonist) or polyinosinic : polycytidylic acid (poly I : C) (activator of TLR 3, retinoic-acid-inducible protein I and melanoma-differentiated-associated gene 5). Changes in ECM proteins and their transcription were measured by ELISA and quantitative real-time PCR. In addition, gene expression for ECM proteins was assessed in a mouse model of RV infection. RV infection increased deposition of the ECM protein, perlecan, by human bronchial epithelial cells, and collagen V and matrix-bound vascular endothelial growth factor were increased in both human bronchial epithelial cell and fibroblast cultures. Purified RV-16 RNA, poly I : C and imiquimod induced similar increases in ECM deposition to those observed with RV-infected fibroblasts. However, only poly I : C induced ECM deposition by bronchial epithelial cells, suggesting that RV-induced ECM deposition is mediated through TLR. Furthermore, gene expression for fibronectin and collagen I was increased in lung homogenates of mice infected with RV-1b. RV infection and TLR ligands promote ECM deposition in isolated cell systems and RV induces ECM gene expression in vivo, thus demonstrating that RV has the potential to contribute to remodelling of the airways through induction of ECM deposition.

Research paper thumbnail of Emerging mediators of airway smooth muscle dysfunction in asthma

Pulmonary Pharmacology & Therapeutics, 2013

Phenotypic changes in airway smooth muscle are integral to the pathophysiological changes that co... more Phenotypic changes in airway smooth muscle are integral to the pathophysiological changes that constitute asthma e namely inflammation, airway wall remodelling and bronchial hyperresponsiveness. In vitro and in vivo studies have shown that the proliferative, secretory and contractile functions of airway smooth muscle are dysfunctional in asthma. These functions can be modulated by various mediators whose levels are altered in asthma, derived from inflammatory cells or produced by airway smooth muscle itself. In this review, we describe the emerging roles of the CXC chemokines (GROs, IP-10), Th17derived cytokines and semaphorins, as well as the influence of viral infection on airway smooth muscle function, with a view to identifying new opportunities for therapeutic intervention in asthma.

Research paper thumbnail of Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo

Respirology, 2011

A hallmark of asthma is airway remodelling, which includes increased deposition of extracellular ... more A hallmark of asthma is airway remodelling, which includes increased deposition of extracellular matrix (ECM) protein. Viral infections may promote the development of asthma and are the most common causes of asthma exacerbations. We evaluated whether rhinovirus (RV) infection induces airway remodelling, as assessed by ECM deposition. Primary human bronchial epithelial cells and lung parenchymal fibroblasts were infected with RV-2 or RV-16, or treated with RV-16 RNA, imiquimod (Toll-like receptor (TLR) 7/8 agonist) or polyinosinic : polycytidylic acid (poly I : C) (activator of TLR 3, retinoic-acid-inducible protein I and melanoma-differentiated-associated gene 5). Changes in ECM proteins and their transcription were measured by ELISA and quantitative real-time PCR. In addition, gene expression for ECM proteins was assessed in a mouse model of RV infection. RV infection increased deposition of the ECM protein, perlecan, by human bronchial epithelial cells, and collagen V and matrix-bound vascular endothelial growth factor were increased in both human bronchial epithelial cell and fibroblast cultures. Purified RV-16 RNA, poly I : C and imiquimod induced similar increases in ECM deposition to those observed with RV-infected fibroblasts. However, only poly I : C induced ECM deposition by bronchial epithelial cells, suggesting that RV-induced ECM deposition is mediated through TLR. Furthermore, gene expression for fibronectin and collagen I was increased in lung homogenates of mice infected with RV-1b. RV infection and TLR ligands promote ECM deposition in isolated cell systems and RV induces ECM gene expression in vivo, thus demonstrating that RV has the potential to contribute to remodelling of the airways through induction of ECM deposition.

Research paper thumbnail of Emerging mediators of airway smooth muscle dysfunction in asthma

Pulmonary Pharmacology & Therapeutics, 2013

Phenotypic changes in airway smooth muscle are integral to the pathophysiological changes that co... more Phenotypic changes in airway smooth muscle are integral to the pathophysiological changes that constitute asthma e namely inflammation, airway wall remodelling and bronchial hyperresponsiveness. In vitro and in vivo studies have shown that the proliferative, secretory and contractile functions of airway smooth muscle are dysfunctional in asthma. These functions can be modulated by various mediators whose levels are altered in asthma, derived from inflammatory cells or produced by airway smooth muscle itself. In this review, we describe the emerging roles of the CXC chemokines (GROs, IP-10), Th17derived cytokines and semaphorins, as well as the influence of viral infection on airway smooth muscle function, with a view to identifying new opportunities for therapeutic intervention in asthma.

Log In