Claudio Rojas Araya - Academia.edu (original) (raw)
Uploads
Papers by Claudio Rojas Araya
SPIE Proceedings, 2012
With two to three deformable mirrors, three Natural Guide Stars (NGS) and five sodium Laser Guide... more With two to three deformable mirrors, three Natural Guide Stars (NGS) and five sodium Laser Guide Stars (LGS), the Gemini Multi-Conjugate Adaptive Optics System (Gemini MCAO a.k.a. GeMS) will be the first facility-class MCAO capability to be offered for regular science observations starting in 2013A. The engineering and science commissioning phase of the project was kicked off in January 2011 when the Gemini South Laser Guide Star Facility (GS LGSF) propagated its 50W laser above the summit of Cerro Pachón, Chile. GeMS commissioning has proceeded throughout 2011 and the first half of 2012 at a pace of one 6-to 10-night run per month with a 5-month pause during the 2011 Chilean winter. This paper focuses on the LGSF-side of the project and provides an overview of the LGSF system and subsystems, their top-level specifications, design, integration with the telescope, and performance throughout commissioning and beyond. Subsystems of the GS LGSF include: (i) a diode-pumped solid-state 1.06+1.32 micron sum-frequency laser capable of producing over 50W of output power at the sodium wavelength (589nm); (ii) Beam Transfer Optics (BTO) that transport the 50W beam up the telescope, split the beam five-ways and configure the five 10W beams for projection by the Laser Launch Telescope (LLT) located behind the Gemini South 8m telescope secondary mirror; and (iii) a variety of safety systems to ensure safe laser operations for observatory personnel and equipment, neighbor observatories, as well as passing aircrafts and satellites.
The EMBO Journal, 2012
By analysing the cellular and subcellular events that occur in the centre of the developing zebra... more By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.
Neural Development, 2014
Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many c... more Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many cells in both time and space. A good example of this is the movement of the cells in the zebrafish neural plate as they converge towards the dorsal midline before internalizing to form a neural keel. How these cells are regulated to ensure that they move together as a coherent tissue is unknown. Previous work in other systems has suggested that the underlying mesoderm may play a role in this process but this has not been shown directly in vivo. Results Here we analyze the roles of subjacent mesoderm in the coordination of neural cell movements during convergence of the zebrafish neural plate and neural keel formation. Live imaging demonstrates that the normal highly coordinated movements of neural plate cells are lost in the absence of underlying mesoderm and the movements of internalization and neural tube formation are severely disrupted. Despite this, neuroepithelial polarity develops ...
SPIE Proceedings, 2012
With two to three deformable mirrors, three Natural Guide Stars (NGS) and five sodium Laser Guide... more With two to three deformable mirrors, three Natural Guide Stars (NGS) and five sodium Laser Guide Stars (LGS), the Gemini Multi-Conjugate Adaptive Optics System (Gemini MCAO a.k.a. GeMS) will be the first facility-class MCAO capability to be offered for regular science observations starting in 2013A. The engineering and science commissioning phase of the project was kicked off in January 2011 when the Gemini South Laser Guide Star Facility (GS LGSF) propagated its 50W laser above the summit of Cerro Pachón, Chile. GeMS commissioning has proceeded throughout 2011 and the first half of 2012 at a pace of one 6-to 10-night run per month with a 5-month pause during the 2011 Chilean winter. This paper focuses on the LGSF-side of the project and provides an overview of the LGSF system and subsystems, their top-level specifications, design, integration with the telescope, and performance throughout commissioning and beyond. Subsystems of the GS LGSF include: (i) a diode-pumped solid-state 1.06+1.32 micron sum-frequency laser capable of producing over 50W of output power at the sodium wavelength (589nm); (ii) Beam Transfer Optics (BTO) that transport the 50W beam up the telescope, split the beam five-ways and configure the five 10W beams for projection by the Laser Launch Telescope (LLT) located behind the Gemini South 8m telescope secondary mirror; and (iii) a variety of safety systems to ensure safe laser operations for observatory personnel and equipment, neighbor observatories, as well as passing aircrafts and satellites.
The EMBO Journal, 2012
By analysing the cellular and subcellular events that occur in the centre of the developing zebra... more By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.
Neural Development, 2014
Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many c... more Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many cells in both time and space. A good example of this is the movement of the cells in the zebrafish neural plate as they converge towards the dorsal midline before internalizing to form a neural keel. How these cells are regulated to ensure that they move together as a coherent tissue is unknown. Previous work in other systems has suggested that the underlying mesoderm may play a role in this process but this has not been shown directly in vivo. Results Here we analyze the roles of subjacent mesoderm in the coordination of neural cell movements during convergence of the zebrafish neural plate and neural keel formation. Live imaging demonstrates that the normal highly coordinated movements of neural plate cells are lost in the absence of underlying mesoderm and the movements of internalization and neural tube formation are severely disrupted. Despite this, neuroepithelial polarity develops ...