C. Sanford - Academia.edu (original) (raw)
Papers by C. Sanford
A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineage... more A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineages, the osteoglossomorph and salmoniform fishes. We present data on comparative morphology and kinematics from two representative species, the rainbow trout (Oncorhynchus mykiss) and the Australian arowana (Scleropages jardinii), which suggest that both the TBA and raking are convergently derived in these lineages. Similar TBA morphologies were present, except for differences in TBA dentition and shape of the novel cleithrobranchial ligament (CBL), which is arc-shaped in O. mykiss and straight in S. jardinii. Eight kinematic variables were used to quantify motion magnitude and maximum-timing in the kinematic input mechanisms of the TBA. Five variables differed inter-specifically (pectoral girdle retraction magnitude and timing, cranial and hyoid elevation and gape-distance timing), yet an incomplete taxon separation across multivariate kinematic space demonstrated an overall similarity in raking behavior. An outgroup analysis using bowfin (Amia calva) and pickerel (Esox americanus) to compare kinematics of raking with chewing and prey-capture provided robust quantitative evidence of raking being a convergently derived behavior. Support was also found for the notion that raking more likely evolved from the strike, a functionally distinct behavior, than from chewing, an alternative prey-processing behavior. Based on raking kinematic and muscle-activity data, we propose biomechanical models of the three input mechanisms that govern kinematics of the basihyal output mechanism during the raking power stroke: (1) cranial elevation protracts the upper TBA jaw from the lower (basihyal) TBA jaw; (2) basihyal retraction is caused directly by contraction of the sternohyoideus (SH); (3) hypaxial shortening, relayed via the pectoral girdle and SH-CBL complex, is an indirect basihyal retraction mechanism modeled as a four-bar linkage. These models will aid future analyses mapping structural and functional traits to the evolution of behaviors.
Journal of Fish Biology, 2013
Synopsis Quantification of anatomical and physiological characteristics of the function of a musc... more Synopsis Quantification of anatomical and physiological characteristics of the function of a musculoskeletal system may yield a detailed understanding of how the organizational levels of morphology, biomechanics, kinematics, and muscle activity patterns (MAPs) influence behavioral diversity. Using separate analyses of these organizational levels in representative study taxa, we sought patterns of congruence in how organizational levels drive behavioral modulation in a novel raking prey-processing behavior found in teleosts belonging to two evolutionarily distinct lineages. Biomechanically divergent prey (elusive, robust goldfish and sedentary, malleable earthworms) were fed to knifefish, Chitala ornata (Osteoglossomorpha) and brook trout, Salvelinus fontinalis (Salmoniformes). Electromyography recorded MAPs from the hyoid protractor, jaw adductor, sternohyoideus, epaxialis, and hypaxialis musculature, while sonomicrometry sampled deep basihyal kinesis and contractile length dynamics in the basihyal protractor and retractor muscles. Syntheses of our results with recent analyses of cranial morphology and raking kinematics showed that raking in Salvelinus relies on an elongated cranial out lever, extensive cranial elevation and a curved cleithrobranchial ligament (CBL), and that both raking MAPs and kinematics remain entirely unmodulated-a highly unusual trait, particularly among feeding generalists. Chitala had a shorter CBL and a raking power stroke involving increased retraction of the elongated pectoral girdle during raking on goldfish. The raking MAP was also modulated in Chitala, involving an extensive overlap between muscle activity of the preparatory and power stroke phases, driven by shifts in hypaxial timing and recruitment of the hyoid protractor muscle. Sonomicrometry revealed that the protractor hyoideus muscle stored energy from retraction of the pectoral girdle for ca. 5-20 ms after onset of the power stroke and then hyper-extended. This mechanism of elastic recoil in Chitala, which amplifies retraction of the basihyal during raking on goldfish without a significant increase in recruitment of the hypaxialis, suggests a unique mechanism of modulation based on performance-enhancing changes in the design and function of the musculoskeletal system.
Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2013
An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has indepen... more An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has independently evolved in several groups of fishes. In these fishes, fin ray movements along the fin generate a series of waves that drive propulsion. There are no published data on the use of the dorsal ribbon-fin in the basal freshwater bowfin, Amia calva. In this study, frequency, amplitude, wavelength, and wave speed along the fin were measured in Amia swimming at different speeds (up to 1.0 body length/sec) to understand how the ribbon-fin generates propulsion. These wave properties were analyzed to (1) determine whether regional specialization occurs along the ribbon-fin, and (2) to reveal how the undulatory waves are used to control swimming speed. Wave properties were also compared between swimming with sole use of the ribbon-fin, and swimming with simultaneous use of the ribbon and pectoral fins. Statistical analysis of ribbon-fin kinematics revealed no differences in kinematic patterns along the ribbon-fin, and that forward propulsive speed in Amia is controlled by the frequency of the wave in the ribbon-fin, irrespective of the contribution of the pectoral fin. This study is the first kinematic analysis of the ribbon-fin in a basal fish and the model species for Amiiform locomotion, providing a basis for understanding ribbon-fin locomotion among a broad range of teleosts.
Journal of Experimental Biology, 2008
Although the motor control of feeding is presumed to be generally conserved, some fishes are capa... more Although the motor control of feeding is presumed to be generally conserved, some fishes are capable of modulating the feeding behaviour in response to prey type and or prey size. This led to the ʻfeeding modulation hypothesisʼ, which states that rapid suction strikes are pre-programmed stereotyped events that proceed to completion once initiated regardless of sensory input. If this hypothesis holds true, successful strikes should be indistinguishable from unsuccessful strikes owing to a lack of feedback control in specialized suction feeding fishes. The hydrodynamics of suction feeding in white-spotted bamboo sharks (Chiloscyllium plagiosum) was studied in three behaviours: successful strikes, intraoral transports of prey and unsuccessful strikes. The area of the fluid velocity region around the head of feeding sharks was quantified using time-resolved digital particle image velocimetry (DPIV). The maximal size of the fluid velocity region is 56% larger in successful strikes than unsuccessful strikes (10.79 cm 2 vs 6.90 cm 2 ), but they do not differ in duration, indicating that strikes are modulated based on some aspect of the prey or simply as a result of decreased effort on the part of the predator. The hydrodynamic profiles of successful and unsuccessful strikes differ after 21 ms, a period probably too short to provide time to react through feedback control. The predator-to-prey distance is larger in missed strikes compared with successful strikes, indicating that insufficient suction is generated to compensate for the increased distance. An accuracy index distinguishes unsuccessful strikes (-0.26) from successful strikes (0.45 to 0.61). Successful strikes occur primarily between the horizontal axis of the mouth and the dorsal boundary of the ingested parcel of water, and missed prey are closer to the boundary or beyond. Suction transports are shorter in duration than suction strikes but have similar maximal fluid velocity areas to move the prey through the oropharyngeal cavity into the oesophagus (54 ms vs 67 ms).
Journal of The Royal Society Interface, 2007
In suction feeding, a volume of water is drawn into the mouth of a predator. Previous studies of ... more In suction feeding, a volume of water is drawn into the mouth of a predator. Previous studies of suction feeding in fishes have shown that significant fluid velocities are confined to a region within one mouth width from the mouth. Therefore, the predator must be relatively close to the prey to ensure capture success. Here, theoretical modelling is combined with empirical data to unravel the mechanism behind feeding on a substrate. First, we approached the problem theoretically by combining the stream functions of two sinks. Computational fluid dynamics modelling is then applied to make quantitative predictions regarding the effects of substrate proximity on the feeding hydrodynamics of a benthic shark. An oblique circular cylinder and a shark head model were used. To test the models, we used digital particle image velocimetry to record fluid flow around the mouth of white-spotted bamboo sharks, Chiloscyllium plagiosum, during suction feeding on the substrate and in the water column. Empirical results confirmed the modelling predictions: the length of the flow field can be doubled due to passive substrate effects during prey capture. Feeding near a substrate extends the distance over which suction is effective and a predator strike can be effective further from the prey.
A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineage... more A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineages, the osteoglossomorph and salmoniform fishes. We present data on comparative morphology and kinematics from two representative species, the rainbow trout (Oncorhynchus mykiss) and the Australian arowana (Scleropages jardinii), which suggest that both the TBA and raking are convergently derived in these lineages. Similar TBA morphologies were present, except for differences in TBA dentition and shape of the novel cleithrobranchial ligament (CBL), which is arc-shaped in O. mykiss and straight in S. jardinii. Eight kinematic variables were used to quantify motion magnitude and maximum-timing in the kinematic input mechanisms of the TBA. Five variables differed inter-specifically (pectoral girdle retraction magnitude and timing, cranial and hyoid elevation and gape-distance timing), yet an incomplete taxon separation across multivariate kinematic space demonstrated an overall similarity in raking behavior. An outgroup analysis using bowfin (Amia calva) and pickerel (Esox americanus) to compare kinematics of raking with chewing and prey-capture provided robust quantitative evidence of raking being a convergently derived behavior. Support was also found for the notion that raking more likely evolved from the strike, a functionally distinct behavior, than from chewing, an alternative prey-processing behavior. Based on raking kinematic and muscle-activity data, we propose biomechanical models of the three input mechanisms that govern kinematics of the basihyal output mechanism during the raking power stroke: (1) cranial elevation protracts the upper TBA jaw from the lower (basihyal) TBA jaw; (2) basihyal retraction is caused directly by contraction of the sternohyoideus (SH); (3) hypaxial shortening, relayed via the pectoral girdle and SH-CBL complex, is an indirect basihyal retraction mechanism modeled as a four-bar linkage. These models will aid future analyses mapping structural and functional traits to the evolution of behaviors.
Journal of Fish Biology, 2013
Synopsis Quantification of anatomical and physiological characteristics of the function of a musc... more Synopsis Quantification of anatomical and physiological characteristics of the function of a musculoskeletal system may yield a detailed understanding of how the organizational levels of morphology, biomechanics, kinematics, and muscle activity patterns (MAPs) influence behavioral diversity. Using separate analyses of these organizational levels in representative study taxa, we sought patterns of congruence in how organizational levels drive behavioral modulation in a novel raking prey-processing behavior found in teleosts belonging to two evolutionarily distinct lineages. Biomechanically divergent prey (elusive, robust goldfish and sedentary, malleable earthworms) were fed to knifefish, Chitala ornata (Osteoglossomorpha) and brook trout, Salvelinus fontinalis (Salmoniformes). Electromyography recorded MAPs from the hyoid protractor, jaw adductor, sternohyoideus, epaxialis, and hypaxialis musculature, while sonomicrometry sampled deep basihyal kinesis and contractile length dynamics in the basihyal protractor and retractor muscles. Syntheses of our results with recent analyses of cranial morphology and raking kinematics showed that raking in Salvelinus relies on an elongated cranial out lever, extensive cranial elevation and a curved cleithrobranchial ligament (CBL), and that both raking MAPs and kinematics remain entirely unmodulated-a highly unusual trait, particularly among feeding generalists. Chitala had a shorter CBL and a raking power stroke involving increased retraction of the elongated pectoral girdle during raking on goldfish. The raking MAP was also modulated in Chitala, involving an extensive overlap between muscle activity of the preparatory and power stroke phases, driven by shifts in hypaxial timing and recruitment of the hyoid protractor muscle. Sonomicrometry revealed that the protractor hyoideus muscle stored energy from retraction of the pectoral girdle for ca. 5-20 ms after onset of the power stroke and then hyper-extended. This mechanism of elastic recoil in Chitala, which amplifies retraction of the basihyal during raking on goldfish without a significant increase in recruitment of the hypaxialis, suggests a unique mechanism of modulation based on performance-enhancing changes in the design and function of the musculoskeletal system.
Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2013
An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has indepen... more An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has independently evolved in several groups of fishes. In these fishes, fin ray movements along the fin generate a series of waves that drive propulsion. There are no published data on the use of the dorsal ribbon-fin in the basal freshwater bowfin, Amia calva. In this study, frequency, amplitude, wavelength, and wave speed along the fin were measured in Amia swimming at different speeds (up to 1.0 body length/sec) to understand how the ribbon-fin generates propulsion. These wave properties were analyzed to (1) determine whether regional specialization occurs along the ribbon-fin, and (2) to reveal how the undulatory waves are used to control swimming speed. Wave properties were also compared between swimming with sole use of the ribbon-fin, and swimming with simultaneous use of the ribbon and pectoral fins. Statistical analysis of ribbon-fin kinematics revealed no differences in kinematic patterns along the ribbon-fin, and that forward propulsive speed in Amia is controlled by the frequency of the wave in the ribbon-fin, irrespective of the contribution of the pectoral fin. This study is the first kinematic analysis of the ribbon-fin in a basal fish and the model species for Amiiform locomotion, providing a basis for understanding ribbon-fin locomotion among a broad range of teleosts.
Journal of Experimental Biology, 2008
Although the motor control of feeding is presumed to be generally conserved, some fishes are capa... more Although the motor control of feeding is presumed to be generally conserved, some fishes are capable of modulating the feeding behaviour in response to prey type and or prey size. This led to the ʻfeeding modulation hypothesisʼ, which states that rapid suction strikes are pre-programmed stereotyped events that proceed to completion once initiated regardless of sensory input. If this hypothesis holds true, successful strikes should be indistinguishable from unsuccessful strikes owing to a lack of feedback control in specialized suction feeding fishes. The hydrodynamics of suction feeding in white-spotted bamboo sharks (Chiloscyllium plagiosum) was studied in three behaviours: successful strikes, intraoral transports of prey and unsuccessful strikes. The area of the fluid velocity region around the head of feeding sharks was quantified using time-resolved digital particle image velocimetry (DPIV). The maximal size of the fluid velocity region is 56% larger in successful strikes than unsuccessful strikes (10.79 cm 2 vs 6.90 cm 2 ), but they do not differ in duration, indicating that strikes are modulated based on some aspect of the prey or simply as a result of decreased effort on the part of the predator. The hydrodynamic profiles of successful and unsuccessful strikes differ after 21 ms, a period probably too short to provide time to react through feedback control. The predator-to-prey distance is larger in missed strikes compared with successful strikes, indicating that insufficient suction is generated to compensate for the increased distance. An accuracy index distinguishes unsuccessful strikes (-0.26) from successful strikes (0.45 to 0.61). Successful strikes occur primarily between the horizontal axis of the mouth and the dorsal boundary of the ingested parcel of water, and missed prey are closer to the boundary or beyond. Suction transports are shorter in duration than suction strikes but have similar maximal fluid velocity areas to move the prey through the oropharyngeal cavity into the oesophagus (54 ms vs 67 ms).
Journal of The Royal Society Interface, 2007
In suction feeding, a volume of water is drawn into the mouth of a predator. Previous studies of ... more In suction feeding, a volume of water is drawn into the mouth of a predator. Previous studies of suction feeding in fishes have shown that significant fluid velocities are confined to a region within one mouth width from the mouth. Therefore, the predator must be relatively close to the prey to ensure capture success. Here, theoretical modelling is combined with empirical data to unravel the mechanism behind feeding on a substrate. First, we approached the problem theoretically by combining the stream functions of two sinks. Computational fluid dynamics modelling is then applied to make quantitative predictions regarding the effects of substrate proximity on the feeding hydrodynamics of a benthic shark. An oblique circular cylinder and a shark head model were used. To test the models, we used digital particle image velocimetry to record fluid flow around the mouth of white-spotted bamboo sharks, Chiloscyllium plagiosum, during suction feeding on the substrate and in the water column. Empirical results confirmed the modelling predictions: the length of the flow field can be doubled due to passive substrate effects during prey capture. Feeding near a substrate extends the distance over which suction is effective and a predator strike can be effective further from the prey.