Silvia Castiglione - Academia.edu (original) (raw)

Uploads

Papers by Silvia Castiglione

Research paper thumbnail of Brain size evolution in whales and dolphins: new data from fossil mysticetes

Biological Journal of the Linnean Society, 2021

Cetaceans (whales and dolphins) have some of the largest and most complex brains in the animal ki... more Cetaceans (whales and dolphins) have some of the largest and most complex brains in the animal kingdom. When and why this trait evolved remains controversial, with proposed drivers ranging from echolocation to foraging complexity and high-level sociality. This uncertainty partially reflects a lack of data on extinct baleen whales (mysticetes), which has
obscured deep-time patterns of brain size evolution in non-echolocating cetaceans. Building on new measurements from mysticete fossils, we show that the evolution of large brains preceded that of echolocation, and subsequently followed a complex trajectory involving several independent increases (e.g. in rorquals and oceanic dolphins) and decreases (e.g. in right whales and ‘river dolphins’). Echolocating whales show a greater tendency towards large brain size, thus reaffirming cognitive demands associated with sound processing as a plausible driver of cetacean encephalization. Nevertheless, our results suggest that other factors such as sociality were also important.

Research paper thumbnail of Brain size evolution in whales and dolphins: new data from fossil mysticetes

Biological Journal of the Linnean Society, 2021

Cetaceans (whales and dolphins) have some of the largest and most complex brains in the animal ki... more Cetaceans (whales and dolphins) have some of the largest and most complex brains in the animal kingdom. When and why this trait evolved remains controversial, with proposed drivers ranging from echolocation to foraging complexity and high-level sociality. This uncertainty partially reflects a lack of data on extinct baleen whales (mysticetes), which has
obscured deep-time patterns of brain size evolution in non-echolocating cetaceans. Building on new measurements from mysticete fossils, we show that the evolution of large brains preceded that of echolocation, and subsequently followed a complex trajectory involving several independent increases (e.g. in rorquals and oceanic dolphins) and decreases (e.g. in right whales and ‘river dolphins’). Echolocating whales show a greater tendency towards large brain size, thus reaffirming cognitive demands associated with sound processing as a plausible driver of cetacean encephalization. Nevertheless, our results suggest that other factors such as sociality were also important.

Log In