Cecilia Mir - Academia.edu (original) (raw)

Papers by Cecilia Mir

Research paper thumbnail of A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications

Smart Materials and Structures, 2007

Two experimental test programs are conducted to collect data and simulate the dynamic behavior of... more Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1Hz. These tests are conducted in a controlled environment at 0, 25 and 50

Research paper thumbnail of CDP-Choline Prevents Glutamate-Mediated Cell Death in Cerebellar Granule Neurons

Journal of Molecular Neuroscience, 2003

Cytidine 5'-diphosphocholine (CDP... more Cytidine 5'-diphosphocholine (CDP-choline) has been shown to reduce neuronal degeneration induced in central nervous system (CNS) injury. However, the precise mechanism underlying the neuroprotective properties of this molecule is still unknown. Excitotoxicity causes cell death in CNS injury (trauma or ischemia) and has also been involved in neurodegenerative diseases. We have examined whether CDP-choline prevents glutamate-mediated cell death, determined by trypan blue exclusion and lactate dehydrogenase activity assays. Pretreatment of rat cerebellar granule cells (CGCs) with CDP-choline causes a dose- and time-dependent reduction of glutamate-induced excitotoxicity. Cell death is prevented >50% when 100 microM CDP-choline is added 6 d before the glutamate excitotoxic insult but less than 20% when added concomitantly with glutamate. Pretreatment of CGCs with CDP-choline reduces almost completely (>80%) the number of apoptotic cells analyzed by flow cytometry, suggesting that CDP-choline exerts a neuroprotective effect by inhibiting the apoptotic pathway induced by glutamate.

Research paper thumbnail of Refining the diagnosis of mitochondrial HMG-CoA synthase deficiency

Journal of Inherited Metabolic Disease, 2006

Mitochondrial HMG-CoA synthase deficiency is an inherited metabolic disorder caused by a defect i... more Mitochondrial HMG-CoA synthase deficiency is an inherited metabolic disorder caused by a defect in the enzyme that regulates the formation of ketone bodies. Patients present with hypoketotic hypoglycaemia, encephalopathy and hepatomegaly, usually precipitated by an intercurrent infection or prolonged fasting. The diagnosis may easily be missed as previously reported results of routine metabolic investigations, urinary organic acids and plasma acylcarnitines may be nonspecific or normal, and a high index of suspicion is required to proceed to further confirmatory tests. We describe a further acute case in which the combination of urinary organic acids, low free carnitine and changes in the plasma acylcarnitine profile on carnitine supplementation were very suggestive of a defect in ketone synthesis. The diagnosis of mitochondrial HMG-CoA synthase deficiency was confirmed on genotyping, revealing two novel mutations: c.614G > A (R188H) and c.971T > C (M307T). A further sibling, in whom the diagnosis had not been made acutely, was also found to be affected. The possible effects of these mutations on enzyme activity are discussed.

Research paper thumbnail of A single-residue mutation, G203E, causes 3-hydroxy-3-methylglutaric aciduria by occluding the substrate channel in the 3D structural model of HMG-CoA lyase

Journal of Inherited Metabolic Disease, 2006

3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects k... more 3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and leucine metabolism. The disease is caused by mutations in the gene coding for 3-hydroxy-3-methylglutarylcoenzyme A lyase (HL). To date 26 different mutations have been described. A (βα) 8 TIM barrel structure has been proposed for the protein, and almost all missense mutations identified so far localize in the beta sheets that define the inside cavity. We report an Italian patient who bears homozygously a novel HL mutation, c.608G>A (p. G203E) in beta sheet six. A structural model of the mutated protein suggests that glutamic acid 203 impedes catalysis by blocking the entrance to the inner cavity of the enzyme. Loss of functionality has been confirmed in expression studies in E.

Research paper thumbnail of Structural (  )8 TIM Barrel Model of 3-Hydroxy-3-methylglutaryl-Coenzyme A Lyase

Journal of Biological Chemistry, 2003

1 The abbreviations used are: HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HL, HMG-CoA lyase; PDB, Pr... more 1 The abbreviations used are: HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HL, HMG-CoA lyase; PDB, Protein Data Bank.

Research paper thumbnail of Ten novel HMGCL mutations in 24 patients of different origin with 3-hydroxy-3-methyl-glutaric aciduria

Human Mutation, 2009

3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects k... more 3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and L-leucine catabolism. The clinical acute symptoms include vomiting, convulsions, metabolic acidosis, hypoketotic hypoglycaemia and lethargy. To date, 33 mutations in 100 patients have been reported in the HMGCL gene. In this study 10 new mutations in 24 patients are described. They include: 5 missense mutations: c.109G>A, c.425C>T, c.521G>A, c.575T>C and c.598A>T, 2 nonsense mutations: c.242G>A and c.559G>T, one small deletion: c.853delC, and 2 mutations in intron regions: c.497+4A>G and c.750+1G>A. Two prevalent mutations were detected, 109G>T (E37X) in 38% of disease alleles analyzed and c.504_505delCT in 10% of them. Although patients are mainly of European origin (71%) and mostly Spanish (54%), the group is ethnically diverse and includes, for the first time, patients from Pakistan, Palestine and Ecuador. We also present a simple, efficient method to express the enzyme and we analyze the possible functional effects of missense mutations. The finding that all identified missense mutations cause a >95% decrease in the enzyme activity, indicates that the disease appears only in very severe genotypes."

Research paper thumbnail of Genetic basis of mitochondrial HMG-CoA synthase deficiency

Human Genetics, 2001

Deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMGS) is a recessive disord... more Deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMGS) is a recessive disorder of ketogenesis that has been previously diagnosed in two children with hypoglycaemic hypoketotic coma during fasting periods. Here, we report the results of molecular investigations in a third patient affected by this disease. Sequencing of the entire coding region of the HMGCS2 gene revealed two missense mutations, G212R and R500H. Mendelian inheritance was confirmed by the analysis of parental samples and neither of the mutations was found on 200 control chromosomes. Functional relevance was confirmed by in vitro expression studies in cytosolic HMGS-deficient cells. Whereas wild-type cDNA of the HMGCS2 gene reverted the auxotrophy for mevalonate, the cDNAs of the mutants did not. The disease may be recognised by specific clinical and biochemical features but it is difficult to confirm enzymatically since the gene is expressed only in liver and testis. Molecular studies may facilitate or confirm future diagnoses in affected patients.

Research paper thumbnail of Skipping of exon 2 and exons 2 plus 3 of HMG-CoA lyase (HL) gene produces the loss of beta sheets 1 and 2 in the recently proposed (beta-alpha)8 TIM Barrel model of HL

Biophysical Chemistry, 2005

HMG-CoA lyase (HL) deficiency is a rare autosomal recessive genetic disorder that affects ketogen... more HMG-CoA lyase (HL) deficiency is a rare autosomal recessive genetic disorder that affects ketogenesis and leucine catabolism. We report a new Spanish patient who bears the frequent nonsense mutation G109T (Mediterranean mutation). This mutation can produce aberrant splicing with three mRNA variants: one of the expected size, the second with deletion of exon 2, and the third with deletion of exons 2 and 3. Recently our group proposed a 3D model for human HL containing a (beta-alpha) 8 (TIM) barrel structure. We have studied the effect of the deletions of exon 2 and exons 2 plus 3 on the proposed HL model. Exon 2 skipping led to the loss of beta-sheet 1, and the skipping of exons 2 and 3 caused the disappearance of alpha helix 1 and beta-sheets 1 and 2. D

Research paper thumbnail of A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications

Smart Materials and Structures, 2007

Two experimental test programs are conducted to collect data and simulate the dynamic behavior of... more Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1Hz. These tests are conducted in a controlled environment at 0, 25 and 50

Research paper thumbnail of CDP-Choline Prevents Glutamate-Mediated Cell Death in Cerebellar Granule Neurons

Journal of Molecular Neuroscience, 2003

Cytidine 5'-diphosphocholine (CDP... more Cytidine 5'-diphosphocholine (CDP-choline) has been shown to reduce neuronal degeneration induced in central nervous system (CNS) injury. However, the precise mechanism underlying the neuroprotective properties of this molecule is still unknown. Excitotoxicity causes cell death in CNS injury (trauma or ischemia) and has also been involved in neurodegenerative diseases. We have examined whether CDP-choline prevents glutamate-mediated cell death, determined by trypan blue exclusion and lactate dehydrogenase activity assays. Pretreatment of rat cerebellar granule cells (CGCs) with CDP-choline causes a dose- and time-dependent reduction of glutamate-induced excitotoxicity. Cell death is prevented >50% when 100 microM CDP-choline is added 6 d before the glutamate excitotoxic insult but less than 20% when added concomitantly with glutamate. Pretreatment of CGCs with CDP-choline reduces almost completely (>80%) the number of apoptotic cells analyzed by flow cytometry, suggesting that CDP-choline exerts a neuroprotective effect by inhibiting the apoptotic pathway induced by glutamate.

Research paper thumbnail of Refining the diagnosis of mitochondrial HMG-CoA synthase deficiency

Journal of Inherited Metabolic Disease, 2006

Mitochondrial HMG-CoA synthase deficiency is an inherited metabolic disorder caused by a defect i... more Mitochondrial HMG-CoA synthase deficiency is an inherited metabolic disorder caused by a defect in the enzyme that regulates the formation of ketone bodies. Patients present with hypoketotic hypoglycaemia, encephalopathy and hepatomegaly, usually precipitated by an intercurrent infection or prolonged fasting. The diagnosis may easily be missed as previously reported results of routine metabolic investigations, urinary organic acids and plasma acylcarnitines may be nonspecific or normal, and a high index of suspicion is required to proceed to further confirmatory tests. We describe a further acute case in which the combination of urinary organic acids, low free carnitine and changes in the plasma acylcarnitine profile on carnitine supplementation were very suggestive of a defect in ketone synthesis. The diagnosis of mitochondrial HMG-CoA synthase deficiency was confirmed on genotyping, revealing two novel mutations: c.614G > A (R188H) and c.971T > C (M307T). A further sibling, in whom the diagnosis had not been made acutely, was also found to be affected. The possible effects of these mutations on enzyme activity are discussed.

Research paper thumbnail of A single-residue mutation, G203E, causes 3-hydroxy-3-methylglutaric aciduria by occluding the substrate channel in the 3D structural model of HMG-CoA lyase

Journal of Inherited Metabolic Disease, 2006

3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects k... more 3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and leucine metabolism. The disease is caused by mutations in the gene coding for 3-hydroxy-3-methylglutarylcoenzyme A lyase (HL). To date 26 different mutations have been described. A (βα) 8 TIM barrel structure has been proposed for the protein, and almost all missense mutations identified so far localize in the beta sheets that define the inside cavity. We report an Italian patient who bears homozygously a novel HL mutation, c.608G>A (p. G203E) in beta sheet six. A structural model of the mutated protein suggests that glutamic acid 203 impedes catalysis by blocking the entrance to the inner cavity of the enzyme. Loss of functionality has been confirmed in expression studies in E.

Research paper thumbnail of Structural (  )8 TIM Barrel Model of 3-Hydroxy-3-methylglutaryl-Coenzyme A Lyase

Journal of Biological Chemistry, 2003

1 The abbreviations used are: HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HL, HMG-CoA lyase; PDB, Pr... more 1 The abbreviations used are: HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HL, HMG-CoA lyase; PDB, Protein Data Bank.

Research paper thumbnail of Ten novel HMGCL mutations in 24 patients of different origin with 3-hydroxy-3-methyl-glutaric aciduria

Human Mutation, 2009

3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects k... more 3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and L-leucine catabolism. The clinical acute symptoms include vomiting, convulsions, metabolic acidosis, hypoketotic hypoglycaemia and lethargy. To date, 33 mutations in 100 patients have been reported in the HMGCL gene. In this study 10 new mutations in 24 patients are described. They include: 5 missense mutations: c.109G>A, c.425C>T, c.521G>A, c.575T>C and c.598A>T, 2 nonsense mutations: c.242G>A and c.559G>T, one small deletion: c.853delC, and 2 mutations in intron regions: c.497+4A>G and c.750+1G>A. Two prevalent mutations were detected, 109G>T (E37X) in 38% of disease alleles analyzed and c.504_505delCT in 10% of them. Although patients are mainly of European origin (71%) and mostly Spanish (54%), the group is ethnically diverse and includes, for the first time, patients from Pakistan, Palestine and Ecuador. We also present a simple, efficient method to express the enzyme and we analyze the possible functional effects of missense mutations. The finding that all identified missense mutations cause a >95% decrease in the enzyme activity, indicates that the disease appears only in very severe genotypes."

Research paper thumbnail of Genetic basis of mitochondrial HMG-CoA synthase deficiency

Human Genetics, 2001

Deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMGS) is a recessive disord... more Deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMGS) is a recessive disorder of ketogenesis that has been previously diagnosed in two children with hypoglycaemic hypoketotic coma during fasting periods. Here, we report the results of molecular investigations in a third patient affected by this disease. Sequencing of the entire coding region of the HMGCS2 gene revealed two missense mutations, G212R and R500H. Mendelian inheritance was confirmed by the analysis of parental samples and neither of the mutations was found on 200 control chromosomes. Functional relevance was confirmed by in vitro expression studies in cytosolic HMGS-deficient cells. Whereas wild-type cDNA of the HMGCS2 gene reverted the auxotrophy for mevalonate, the cDNAs of the mutants did not. The disease may be recognised by specific clinical and biochemical features but it is difficult to confirm enzymatically since the gene is expressed only in liver and testis. Molecular studies may facilitate or confirm future diagnoses in affected patients.

Research paper thumbnail of Skipping of exon 2 and exons 2 plus 3 of HMG-CoA lyase (HL) gene produces the loss of beta sheets 1 and 2 in the recently proposed (beta-alpha)8 TIM Barrel model of HL

Biophysical Chemistry, 2005

HMG-CoA lyase (HL) deficiency is a rare autosomal recessive genetic disorder that affects ketogen... more HMG-CoA lyase (HL) deficiency is a rare autosomal recessive genetic disorder that affects ketogenesis and leucine catabolism. We report a new Spanish patient who bears the frequent nonsense mutation G109T (Mediterranean mutation). This mutation can produce aberrant splicing with three mRNA variants: one of the expected size, the second with deletion of exon 2, and the third with deletion of exons 2 and 3. Recently our group proposed a 3D model for human HL containing a (beta-alpha) 8 (TIM) barrel structure. We have studied the effect of the deletions of exon 2 and exons 2 plus 3 on the proposed HL model. Exon 2 skipping led to the loss of beta-sheet 1, and the skipping of exons 2 and 3 caused the disappearance of alpha helix 1 and beta-sheets 1 and 2. D