Cheng-ming Chuong - Academia.edu (original) (raw)
Papers by Cheng-ming Chuong
Nature Communications, 2015
The diverse morphology of vertebrate skeletal system is genetically controlled, yet the means by ... more The diverse morphology of vertebrate skeletal system is genetically controlled, yet the means by which cells shape the skeleton remains to be fully illuminated. Here we perform quantitative analyses of cell behaviours in the growth plate cartilage, the template for long bone formation, to gain insights into this process. Using a robust avian embryonic organ culture, we employ time-lapse two-photon laser scanning microscopy to observe proliferative cells' behaviours during cartilage growth, resulting in cellular trajectories with a spreading displacement mainly along the tissue elongation axis. We build a novel software toolkit of quantitative methods to segregate the contributions of various cellular processes to the cellular trajectories. We find that convergent-extension, mitotic cell division, and daughter cell rearrangement do not contribute significantly to the observed growth process; instead, extracellular matrix deposition and cell volume enlargement are the key contributors to embryonic cartilage elongation.
The Journal of investigative dermatology, Jan 10, 2015
Hair follicles undergo cyclic behavior through regression (catagen), rest (telogen) and regenerat... more Hair follicles undergo cyclic behavior through regression (catagen), rest (telogen) and regeneration (anagen) during postnatal life. The hair cycle transition is strictly regulated by the autonomous and extrinsic molecular environment. However, whether there is a switch controlling catagen-telogen transition remains largely unknown. Here we show that hair follicles cycle from catagen to the next anagen without transitioning through a morphologically typical telogen after Gsdma3 mutation. This leaves an ESLS (epithelial strand-like structure) during the time period corresponding to telogen phase in WT mice. Molecularly, Wnt10b is upregulated in Gsdma3 mutant mice. Restoration of Gsdma3 expression in AE (alopecia and excoriation) mouse skin rescues hair follicle telogen entry and significantly decreases the Wnt10b-mediated Wnt/β-catenin signaling pathway. Overexpression of Wnt10b inhibits telogen entry by increasing epithelial strand cell proliferation. Subsequently, hair follicles wi...
The journal of investigative dermatology. Symposium proceedings / the Society for Investigative Dermatology, Inc. [and] European Society for Dermatological Research, 1999
The formation of skin appendages represents a morphogenetic process through which a homogeneous s... more The formation of skin appendages represents a morphogenetic process through which a homogeneous system is converted into a patterned system. We have pursued molecules involved in the early placode induction and mesenchymal condensation stages of this process. We found that intracellular and extracellular signaling molecules collaborate to position the location of feather primordia and initiate mesenchymal condensations mediated by adhesion molecules. During the inductive stage, cells interact in a fashion best described by a reaction-diffusion mechanism. Thus in early feather morphogenesis, low level adhesion molecules drive cell interactions. The interactions were modulated by extracellular signaling molecules, which eventually increase the level of signaling molecules at sites of feather initiation and subsequently the level of adhesion molecules (Jiang et al, 1999a). These physico-chemical events lead to the formation of dermal condensations and epithelial placodes at sites of fe...
Development (Cambridge, England), 1999
Periodic patterning is a fundamental organizing process in biology. Using a feather reconstitutio... more Periodic patterning is a fundamental organizing process in biology. Using a feather reconstitution assay, we traced back to the initial stage of the patterning process. Cells started from an equivalent state and self-organized into a periodic pattern without previous cues or sequential propagation. When different numbers of dissociated mesenchymal cells were confronted with a piece of same-sized epithelium, the size of feather primordia remained constant, not the number or interbud spacing, suggesting size determination is intrinsic to dissociated cells. Increasing bone morphogenetic protein (BMP) receptor expression in mesenchymal cells decreased the size of primordia while antagonizing the BMP pathway with Noggin increased the size of primordia. A threshold number of mesenchymal cells with a basal level of adhesion molecules such as NCAM were sufficient to trigger the patterning process. The process is best visualized by the progressive restriction of beta-catenin transcripts in t...
Development (Cambridge, England), 1993
To study the pattern of gap junctional communication in chicken skin and feather development, we ... more To study the pattern of gap junctional communication in chicken skin and feather development, we injected Lucifer Yellow into single cells and monitored the transfer of the fluorescent dye through gap junctions. Dye coupling is present between cells of the epithelium as well as between cells of the mesoderm. However, dye transfer did not occur equally in all directions and showed several consistent patterns and asymmetries, including: (1) no dye coupling between mesoderm and epithelium, (2) partial restriction of dye coupling at the feather bud/interbud boundary during early feather bud development, (3) preferential distribution of Lucifer Yellow along the anteroposterior axis of the feather placode and (4) absence of dye coupling in some epithelial cells. These results suggest the presence of preferential pathways of communication that may play a role in the patterning of chicken skin.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 1984
Several cell adhesion molecules involved in neuron-neuron and neuron-glia interactions have been ... more Several cell adhesion molecules involved in neuron-neuron and neuron-glia interactions have been identified in our laboratory and have been shown to undergo cell surface modulation. In the case of the neural cell adhesion molecule (N-CAM), it has been found that during development the molecule is converted from a microheterogeneous embryonic (E) form containing 30 gm of sialic acid/100 gm of polypeptide to several distinct adult (A) forms containing one third as much of this sugar. In vitro analyses indicate that this change is accompanied by a 4-fold increase in the rate of N-CAM homophilic binding. In the present study of the mouse and the chick, alterations of N-CAMs occurring as a result of E----A conversion, prevalence modulation, and changes in antigenic state during the development of different neural regions were analyzed by the use of highly specific polyclonal and monoclonal antibodies combined with anatomical dissection and several new quantitative assays. We made the fol...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 1986
We have compared the expression of the neural cell adhesion molecule (N-CAM) and the neuron-glial... more We have compared the expression of the neural cell adhesion molecule (N-CAM) and the neuron-glial cell adhesion molecule (Ng-CAM) during histogenesis of the chick nervous system. Data from immunohistochemistry and photometry were combined to construct maps of the overall distribution and dynamics of CAM appearance and disappearance. Each CAM appeared in a characteristic spatial and temporal pattern in various areas during cell movement, fiber outgrowth, tract formation, and myelination. N-CAM was more uniformly distributed than Ng-CAM and was present on all neural cell bodies and processes of the CNS and PNS. In the adult, the staining pattern of N-CAM remained similar to that in the embryo, although the staining intensity was diminished. During embryonic development, Ng-CAM was expressed on extending neurites and migrating neurons. The appearance Ng-CAM in the CNS was correlated particularly with times of cell migration in spinal cord and cerebellum, and in regions undergoing neuri...
Proceedings of the National Academy of Sciences, 2014
Regulation of adult stem cells (SCs) is fundamental for organ maintenance and tissue regeneration... more Regulation of adult stem cells (SCs) is fundamental for organ maintenance and tissue regeneration. On the body surface, different ectodermal organs exhibit distinctive modes of regeneration and the dynamics of their SC homeostasis remain to be unraveled. A slow cycling characteristic has been used to identify SCs in hair follicles and sweat glands; however, whether a quiescent population exists in continuously growing nails remains unknown. Using an in vivo label retaining cells (LRCs) system, we detected an unreported population of quiescent cells within the basal layer of the nail proximal fold, organized in a ring-like configuration around the nail root. These nail LRCs express the hair stem cell marker, keratin 15 (K15), and lineage tracing show that these K15-derived cells can contribute to both the nail structure and peri-nail epidermis, and more toward the latter. Thus, this stem cell population is bifunctional. Upon nail plucking injury, the homeostasis is tilted with these SCs dominantly delivering progeny to the nail matrix and differentiated nail plate, demonstrating their plasticity to adapt to wounding stimuli. Moreover, in vivo engraftment experiments established that transplanted nail LRCs can actively participate in functional nail regeneration. Transcriptional profiling of isolated nail LRCs revealed bone morphogenetic protein signaling favors nail differentiation over epidermal fate. Taken together, we have found a previously unidentified ring-configured population of bifunctional SCs, located at the interface between the nail appendage organ and adjacent epidermis, which physiologically display coordinated homeostatic dynamics but are capable of rediverting stem cell flow in response to injury.
Regeneration, 2014
Lizard skin can produce scales during embryonic development, tail regeneration, and wound healing... more Lizard skin can produce scales during embryonic development, tail regeneration, and wound healing; however, underlying molecular signaling and extracellular matrix protein expression remains unknown. We mapped cell proliferation, signaling and extracellular matrix proteins in regenerating and developing lizard scales in different body regions with different wound severity. Following lizard tail autotomy (self-amputation), de novo scales regenerate from regenerating tail blastema. Despite topological differences between embryonic and adult scale formation, asymmetric cell proliferation produces the newly formed outer scale surface. Regionally different responses to wounding were observed; open wounds induced better scale regeneration from tail skin than trunk skin. Molecular studies suggest NCAM enriched dermal regions exhibit higher cell proliferation associated with scale growth. β-catenin may be involved in epidermal scale differentiation. Dynamic tenascin-C expression suggests it...
Genome Biology and Evolution, 2014
These authors contributed equally to this work.
Journal of experimental zoology. Part B, Molecular and developmental evolution, Jan 15, 2003
In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptati... more In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss the molecular and developmental biological experiments using chicken integuments as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From this evidence, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proxim...
Journal of experimental zoology. Part B, Molecular and developmental evolution, Jan 15, 2003
Darwin's theory describes the principles that are responsible for evolutionary change of orga... more Darwin's theory describes the principles that are responsible for evolutionary change of organisms and their attributes. The actual mechanisms, however, need to be studied for each species and each organ separately. Here we have investigated the mechanisms underlying these principles in the avian feather. Feathers comprise one of the most complex and diverse epidermal organs as demonstrated by their shape, size, patterned arrangement and pigmentation. Variations can occur at several steps along each level of organization, leading to highly diverse forms and functions. Feathers develop gradually during ontogeny through a series of steps that may correspond to the evolutionary steps that were taken during the phylogeny from a reptilian ancestor to birds. These developmental steps include 1) the formation of feather tract fields on the skin surfaces; 2) periodic patterning of the individual feather primordia within the feather tract fields; 3) feather bud morphogenesis establishing...
Current Topics in Developmental Biology, 2005
Science (New York, N.Y.), Jan 12, 2014
Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that bir... more Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable comple...
BMC Genomics, 2015
Background: Regional specificity allows different skin regions to exhibit different characteristi... more Background: Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge.
Expression of Lunatic fringe mRNA was studied during feather morphogenesis and showed three stage... more Expression of Lunatic fringe mRNA was studied during feather morphogenesis and showed three stages of dynamic expression pattern. (1) Lunatic fringe was first expressed in the epithelium as a ring bordering the feather primordium when it was initially induced. (2) Shortly after, it showed a polarized pattern, first toward the lateral side of the feather primordium and then made a
Developmental Biology, 2000
We explored the role of β-catenin in chicken skin morphogenesis. Initially β-catenin mRNA was exp... more We explored the role of β-catenin in chicken skin morphogenesis. Initially β-catenin mRNA was expressed at homogeneous levels in the epithelia over a skin appendage tract field which became transformed into a periodic pattern corresponding to individual primordia. The importance of periodic patterning was shown in scaleless mutants, in which β-catenin was initially expressed normally, but failed to make a
Wound Repair and Regeneration, 2009
Differences in cellular competence offer an explanation for the differences in the healing capaci... more Differences in cellular competence offer an explanation for the differences in the healing capacity of tissues of various ages and conditions. The homeobox family of genes plays key roles in governing cellular competence. Of these, we hypothesize that Msx2 is a strong candidate regulator of competence in skin wound healing because it is expressed in the skin during fetal development in the stage of scarless healing, affects postnatal digit regeneration, and is reexpressed transiently during postnatal skin wound repair. To address whether Msx2 affects cellular competence in injury repair, 3 mm full-thickness excisional wounds were created on the back of C.Cg-Msx2(tm1Rilm)/Mmcd (Msx2 null) mice and the healing pattern was compared with that of the wild type mice. The results show that Msx2 null mice exhibited faster wound closure with accelerated reepithelialization plus earlier appearance of keratin markers for differentiation and an increased level of smooth muscle actin and tenascin in the granulation tissue. In vitro, keratinocytes of Msx2 null mice exhibit increased cell migration and the fibroblasts show stronger collagen gel contraction. Thus, our results suggest that Msx2 regulates the cellular competence of keratinocytes and fibroblasts in skin injury repair.
The Journal of Cell Biology, 1986
Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia... more Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was
The Journal of Cell Biology, 1985
The potential relationship of cell adhesion to embryonic induction during feather formation was e... more The potential relationship of cell adhesion to embryonic induction during feather formation was examined by immunohistochemical analysis of the spatiotemporal distribution of three cell-adhesion molecules (CAMs), neural CAM (N-CAM), liver CAM (L-CAM), and neuron-glia CAM (Ng-CAM), and of substrate molecules (laminin and fibronectin) in embryonic chicken skin. The N-CAM found at sites of embryonic induction in the feather was found to be similar to brain N-CAM as judged by immuno-cross-reactivity, migratory position in PAGE, and the presence of embryonic to adult conversion. In contrast to the N-CAM found in the brain, however, only one polypeptide of Mr 140,000 was seen. N-CAM-positive dermal condensations were distributed periodically under L-CAM-positive feather placodes at those sites where basement membranes are known to be disrupted. After initiation of induction, L-CAM-positive placode cells became transiently N-CAM-positive. N-CAM was asymmetrically concentrated in the dorsal region of the feather bud, while fibronectin was concentrated in the ventral region. During feather follicle formation, N-CAM was expressed in the dermal papilla and was closely apposed to the L-CAM-positive papillar ectoderm, while the dermal papilla showed no evidence of laminin or fibronectin. The collar epithelium was both N-CAM- and L-CAM-positive. During the formation of the feather filament, N-CAM appeared periodically and asymmetrically on basilar cells located in the valleys between adjacent barb ridges. In contrast to the two primary CAMs, Ng-CAM was found only on nerves supplying the feather and the skin. These studies indicate that at each site of induction during feather morphogenesis, a general pattern is repeated in which an epithelial structure linked by L-CAM is confronted with periodically propagating condensations of cells linked by N-CAM.
Nature Communications, 2015
The diverse morphology of vertebrate skeletal system is genetically controlled, yet the means by ... more The diverse morphology of vertebrate skeletal system is genetically controlled, yet the means by which cells shape the skeleton remains to be fully illuminated. Here we perform quantitative analyses of cell behaviours in the growth plate cartilage, the template for long bone formation, to gain insights into this process. Using a robust avian embryonic organ culture, we employ time-lapse two-photon laser scanning microscopy to observe proliferative cells' behaviours during cartilage growth, resulting in cellular trajectories with a spreading displacement mainly along the tissue elongation axis. We build a novel software toolkit of quantitative methods to segregate the contributions of various cellular processes to the cellular trajectories. We find that convergent-extension, mitotic cell division, and daughter cell rearrangement do not contribute significantly to the observed growth process; instead, extracellular matrix deposition and cell volume enlargement are the key contributors to embryonic cartilage elongation.
The Journal of investigative dermatology, Jan 10, 2015
Hair follicles undergo cyclic behavior through regression (catagen), rest (telogen) and regenerat... more Hair follicles undergo cyclic behavior through regression (catagen), rest (telogen) and regeneration (anagen) during postnatal life. The hair cycle transition is strictly regulated by the autonomous and extrinsic molecular environment. However, whether there is a switch controlling catagen-telogen transition remains largely unknown. Here we show that hair follicles cycle from catagen to the next anagen without transitioning through a morphologically typical telogen after Gsdma3 mutation. This leaves an ESLS (epithelial strand-like structure) during the time period corresponding to telogen phase in WT mice. Molecularly, Wnt10b is upregulated in Gsdma3 mutant mice. Restoration of Gsdma3 expression in AE (alopecia and excoriation) mouse skin rescues hair follicle telogen entry and significantly decreases the Wnt10b-mediated Wnt/β-catenin signaling pathway. Overexpression of Wnt10b inhibits telogen entry by increasing epithelial strand cell proliferation. Subsequently, hair follicles wi...
The journal of investigative dermatology. Symposium proceedings / the Society for Investigative Dermatology, Inc. [and] European Society for Dermatological Research, 1999
The formation of skin appendages represents a morphogenetic process through which a homogeneous s... more The formation of skin appendages represents a morphogenetic process through which a homogeneous system is converted into a patterned system. We have pursued molecules involved in the early placode induction and mesenchymal condensation stages of this process. We found that intracellular and extracellular signaling molecules collaborate to position the location of feather primordia and initiate mesenchymal condensations mediated by adhesion molecules. During the inductive stage, cells interact in a fashion best described by a reaction-diffusion mechanism. Thus in early feather morphogenesis, low level adhesion molecules drive cell interactions. The interactions were modulated by extracellular signaling molecules, which eventually increase the level of signaling molecules at sites of feather initiation and subsequently the level of adhesion molecules (Jiang et al, 1999a). These physico-chemical events lead to the formation of dermal condensations and epithelial placodes at sites of fe...
Development (Cambridge, England), 1999
Periodic patterning is a fundamental organizing process in biology. Using a feather reconstitutio... more Periodic patterning is a fundamental organizing process in biology. Using a feather reconstitution assay, we traced back to the initial stage of the patterning process. Cells started from an equivalent state and self-organized into a periodic pattern without previous cues or sequential propagation. When different numbers of dissociated mesenchymal cells were confronted with a piece of same-sized epithelium, the size of feather primordia remained constant, not the number or interbud spacing, suggesting size determination is intrinsic to dissociated cells. Increasing bone morphogenetic protein (BMP) receptor expression in mesenchymal cells decreased the size of primordia while antagonizing the BMP pathway with Noggin increased the size of primordia. A threshold number of mesenchymal cells with a basal level of adhesion molecules such as NCAM were sufficient to trigger the patterning process. The process is best visualized by the progressive restriction of beta-catenin transcripts in t...
Development (Cambridge, England), 1993
To study the pattern of gap junctional communication in chicken skin and feather development, we ... more To study the pattern of gap junctional communication in chicken skin and feather development, we injected Lucifer Yellow into single cells and monitored the transfer of the fluorescent dye through gap junctions. Dye coupling is present between cells of the epithelium as well as between cells of the mesoderm. However, dye transfer did not occur equally in all directions and showed several consistent patterns and asymmetries, including: (1) no dye coupling between mesoderm and epithelium, (2) partial restriction of dye coupling at the feather bud/interbud boundary during early feather bud development, (3) preferential distribution of Lucifer Yellow along the anteroposterior axis of the feather placode and (4) absence of dye coupling in some epithelial cells. These results suggest the presence of preferential pathways of communication that may play a role in the patterning of chicken skin.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 1984
Several cell adhesion molecules involved in neuron-neuron and neuron-glia interactions have been ... more Several cell adhesion molecules involved in neuron-neuron and neuron-glia interactions have been identified in our laboratory and have been shown to undergo cell surface modulation. In the case of the neural cell adhesion molecule (N-CAM), it has been found that during development the molecule is converted from a microheterogeneous embryonic (E) form containing 30 gm of sialic acid/100 gm of polypeptide to several distinct adult (A) forms containing one third as much of this sugar. In vitro analyses indicate that this change is accompanied by a 4-fold increase in the rate of N-CAM homophilic binding. In the present study of the mouse and the chick, alterations of N-CAMs occurring as a result of E----A conversion, prevalence modulation, and changes in antigenic state during the development of different neural regions were analyzed by the use of highly specific polyclonal and monoclonal antibodies combined with anatomical dissection and several new quantitative assays. We made the fol...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 1986
We have compared the expression of the neural cell adhesion molecule (N-CAM) and the neuron-glial... more We have compared the expression of the neural cell adhesion molecule (N-CAM) and the neuron-glial cell adhesion molecule (Ng-CAM) during histogenesis of the chick nervous system. Data from immunohistochemistry and photometry were combined to construct maps of the overall distribution and dynamics of CAM appearance and disappearance. Each CAM appeared in a characteristic spatial and temporal pattern in various areas during cell movement, fiber outgrowth, tract formation, and myelination. N-CAM was more uniformly distributed than Ng-CAM and was present on all neural cell bodies and processes of the CNS and PNS. In the adult, the staining pattern of N-CAM remained similar to that in the embryo, although the staining intensity was diminished. During embryonic development, Ng-CAM was expressed on extending neurites and migrating neurons. The appearance Ng-CAM in the CNS was correlated particularly with times of cell migration in spinal cord and cerebellum, and in regions undergoing neuri...
Proceedings of the National Academy of Sciences, 2014
Regulation of adult stem cells (SCs) is fundamental for organ maintenance and tissue regeneration... more Regulation of adult stem cells (SCs) is fundamental for organ maintenance and tissue regeneration. On the body surface, different ectodermal organs exhibit distinctive modes of regeneration and the dynamics of their SC homeostasis remain to be unraveled. A slow cycling characteristic has been used to identify SCs in hair follicles and sweat glands; however, whether a quiescent population exists in continuously growing nails remains unknown. Using an in vivo label retaining cells (LRCs) system, we detected an unreported population of quiescent cells within the basal layer of the nail proximal fold, organized in a ring-like configuration around the nail root. These nail LRCs express the hair stem cell marker, keratin 15 (K15), and lineage tracing show that these K15-derived cells can contribute to both the nail structure and peri-nail epidermis, and more toward the latter. Thus, this stem cell population is bifunctional. Upon nail plucking injury, the homeostasis is tilted with these SCs dominantly delivering progeny to the nail matrix and differentiated nail plate, demonstrating their plasticity to adapt to wounding stimuli. Moreover, in vivo engraftment experiments established that transplanted nail LRCs can actively participate in functional nail regeneration. Transcriptional profiling of isolated nail LRCs revealed bone morphogenetic protein signaling favors nail differentiation over epidermal fate. Taken together, we have found a previously unidentified ring-configured population of bifunctional SCs, located at the interface between the nail appendage organ and adjacent epidermis, which physiologically display coordinated homeostatic dynamics but are capable of rediverting stem cell flow in response to injury.
Regeneration, 2014
Lizard skin can produce scales during embryonic development, tail regeneration, and wound healing... more Lizard skin can produce scales during embryonic development, tail regeneration, and wound healing; however, underlying molecular signaling and extracellular matrix protein expression remains unknown. We mapped cell proliferation, signaling and extracellular matrix proteins in regenerating and developing lizard scales in different body regions with different wound severity. Following lizard tail autotomy (self-amputation), de novo scales regenerate from regenerating tail blastema. Despite topological differences between embryonic and adult scale formation, asymmetric cell proliferation produces the newly formed outer scale surface. Regionally different responses to wounding were observed; open wounds induced better scale regeneration from tail skin than trunk skin. Molecular studies suggest NCAM enriched dermal regions exhibit higher cell proliferation associated with scale growth. β-catenin may be involved in epidermal scale differentiation. Dynamic tenascin-C expression suggests it...
Genome Biology and Evolution, 2014
These authors contributed equally to this work.
Journal of experimental zoology. Part B, Molecular and developmental evolution, Jan 15, 2003
In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptati... more In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss the molecular and developmental biological experiments using chicken integuments as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From this evidence, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proxim...
Journal of experimental zoology. Part B, Molecular and developmental evolution, Jan 15, 2003
Darwin's theory describes the principles that are responsible for evolutionary change of orga... more Darwin's theory describes the principles that are responsible for evolutionary change of organisms and their attributes. The actual mechanisms, however, need to be studied for each species and each organ separately. Here we have investigated the mechanisms underlying these principles in the avian feather. Feathers comprise one of the most complex and diverse epidermal organs as demonstrated by their shape, size, patterned arrangement and pigmentation. Variations can occur at several steps along each level of organization, leading to highly diverse forms and functions. Feathers develop gradually during ontogeny through a series of steps that may correspond to the evolutionary steps that were taken during the phylogeny from a reptilian ancestor to birds. These developmental steps include 1) the formation of feather tract fields on the skin surfaces; 2) periodic patterning of the individual feather primordia within the feather tract fields; 3) feather bud morphogenesis establishing...
Current Topics in Developmental Biology, 2005
Science (New York, N.Y.), Jan 12, 2014
Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that bir... more Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable comple...
BMC Genomics, 2015
Background: Regional specificity allows different skin regions to exhibit different characteristi... more Background: Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge.
Expression of Lunatic fringe mRNA was studied during feather morphogenesis and showed three stage... more Expression of Lunatic fringe mRNA was studied during feather morphogenesis and showed three stages of dynamic expression pattern. (1) Lunatic fringe was first expressed in the epithelium as a ring bordering the feather primordium when it was initially induced. (2) Shortly after, it showed a polarized pattern, first toward the lateral side of the feather primordium and then made a
Developmental Biology, 2000
We explored the role of β-catenin in chicken skin morphogenesis. Initially β-catenin mRNA was exp... more We explored the role of β-catenin in chicken skin morphogenesis. Initially β-catenin mRNA was expressed at homogeneous levels in the epithelia over a skin appendage tract field which became transformed into a periodic pattern corresponding to individual primordia. The importance of periodic patterning was shown in scaleless mutants, in which β-catenin was initially expressed normally, but failed to make a
Wound Repair and Regeneration, 2009
Differences in cellular competence offer an explanation for the differences in the healing capaci... more Differences in cellular competence offer an explanation for the differences in the healing capacity of tissues of various ages and conditions. The homeobox family of genes plays key roles in governing cellular competence. Of these, we hypothesize that Msx2 is a strong candidate regulator of competence in skin wound healing because it is expressed in the skin during fetal development in the stage of scarless healing, affects postnatal digit regeneration, and is reexpressed transiently during postnatal skin wound repair. To address whether Msx2 affects cellular competence in injury repair, 3 mm full-thickness excisional wounds were created on the back of C.Cg-Msx2(tm1Rilm)/Mmcd (Msx2 null) mice and the healing pattern was compared with that of the wild type mice. The results show that Msx2 null mice exhibited faster wound closure with accelerated reepithelialization plus earlier appearance of keratin markers for differentiation and an increased level of smooth muscle actin and tenascin in the granulation tissue. In vitro, keratinocytes of Msx2 null mice exhibit increased cell migration and the fibroblasts show stronger collagen gel contraction. Thus, our results suggest that Msx2 regulates the cellular competence of keratinocytes and fibroblasts in skin injury repair.
The Journal of Cell Biology, 1986
Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia... more Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was
The Journal of Cell Biology, 1985
The potential relationship of cell adhesion to embryonic induction during feather formation was e... more The potential relationship of cell adhesion to embryonic induction during feather formation was examined by immunohistochemical analysis of the spatiotemporal distribution of three cell-adhesion molecules (CAMs), neural CAM (N-CAM), liver CAM (L-CAM), and neuron-glia CAM (Ng-CAM), and of substrate molecules (laminin and fibronectin) in embryonic chicken skin. The N-CAM found at sites of embryonic induction in the feather was found to be similar to brain N-CAM as judged by immuno-cross-reactivity, migratory position in PAGE, and the presence of embryonic to adult conversion. In contrast to the N-CAM found in the brain, however, only one polypeptide of Mr 140,000 was seen. N-CAM-positive dermal condensations were distributed periodically under L-CAM-positive feather placodes at those sites where basement membranes are known to be disrupted. After initiation of induction, L-CAM-positive placode cells became transiently N-CAM-positive. N-CAM was asymmetrically concentrated in the dorsal region of the feather bud, while fibronectin was concentrated in the ventral region. During feather follicle formation, N-CAM was expressed in the dermal papilla and was closely apposed to the L-CAM-positive papillar ectoderm, while the dermal papilla showed no evidence of laminin or fibronectin. The collar epithelium was both N-CAM- and L-CAM-positive. During the formation of the feather filament, N-CAM appeared periodically and asymmetrically on basilar cells located in the valleys between adjacent barb ridges. In contrast to the two primary CAMs, Ng-CAM was found only on nerves supplying the feather and the skin. These studies indicate that at each site of induction during feather morphogenesis, a general pattern is repeated in which an epithelial structure linked by L-CAM is confronted with periodically propagating condensations of cells linked by N-CAM.