Christian Gonzalez-Billault - Academia.edu (original) (raw)
Papers by Christian Gonzalez-Billault
ABSTRACT Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal... more ABSTRACT Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Frontiers in Cellular Neuroscience, 2015
A proper balance between chemical reduction and oxidation (known as redox balance) is essential f... more A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca(2+) homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons.
PLOS ONE, 2015
Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane de... more Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.
Neuroscience, 2009
Alzheimer disease (AD) is a neurodegenerative disorder characterized by neuronal loss, dementia a... more Alzheimer disease (AD) is a neurodegenerative disorder characterized by neuronal loss, dementia and pain. Two main protein aggregates, extracellular (senile plaques, SP) and intracellular (neurofibrillary tangles, NFT), are associated with AD. NFT are mainly composed of hyperphosphorylated microtubule-associated protein tau. Nowadays several protein kinases have been implicated in the phosphorylation of tau, including glycogen synthase kinase 3 beta (GSK3), MAP kinase, protein kinase A and cyclin-dependent kinase 5 (Cdk5). A deregulation in the activity of Cdk5 has been postulated to participate in the abnormal tau hyperphosphorylation in AD. Activation of Cdk5 occurs after its association with p35, a neuron-specific activator, predominantly in the nervous system. Therefore, in this study we used the tetracycline transactivator system to increase p35/ GFP in neuronal cells, treated with amyloid beta 1-42 (A 1-42 ) peptide. These cells showed an increase of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cleaved caspase-3 staining, indicating increased apoptosis of neuronal cells. This effect could be reversed by the addition of tetracycline in the culture medium, suggesting synergistic effects of p35 over-expression and A treatment in the apoptosis of neuronal cells. These results represent a linkage between amyloidogenic and cdk5 pathways leading to apoptosis of neuronal cells. (C. Gonzalez-Billault). Abbreviations: AD, Alzheimer disease; A, -amyloid peptide; Cdk5, cyclin-dependent kinase 5; CFP, cyan fluorescent protein; CIP, cyclindependent kinase 5 inhibitor peptide; CMV, cytomegalovirus; EGFP, enhanced green fluorescent protein; NFT, neurofibrillary tangles; PBST, 5% nonfat dry milk in PBS with 0.05% Tween-20; tTA, tetracycline dependent transactivator; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling.
Population aging is among the most important global transformations. Compared to European and Nor... more Population aging is among the most important global
transformations. Compared to European and North American
countries, Chile is among the countries with the fastest growth of
life expectancy at birth during recent decades. The aging of Chile’s
population is related to the improvement of living conditions, but
also entails risks that tend to be associated with a rapid economic
growth accompanied by large income inequalities and a chronic
deficit of basic social benefits. The rapid demographic transition
towards an aged population has unfolded in a context of poor development of public policies to tackle the opportunities and needs
associated with an aging society. This article provides a brief
overview of current Chilean public policy on aging, with a focus on
healthy aging as defined by World Health Organization. The
discussion addresses core challenges to successfully achieve
healthy aging in Chile.
Journal of neurochemistry, 2014
Neuronal cells are characterized by the presence of two confined domains, which are different in ... more Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evid...
Journal of Alzheimer's disease : JAD, 2012
The neuronal cytoskeleton regulates numerous processes that occur in normal homeostasis. Under pa... more The neuronal cytoskeleton regulates numerous processes that occur in normal homeostasis. Under pathological conditions such as those of Alzheimer's disease (AD), major alterations in cytoskeleton organization have been observed and changes in both microtubules and actin filaments have been reported. Many neurodegenerative consequences of AD are linked to the production and accumulation of amyloid peptides (Aβ) and their oligomers, produced from the internal cleavage of the amyloid-β protein precursor. We previously reported that fibrillar Aβ1-42 (fAβ) treatment of hippocampal neurons induced an increase in Rac1 and Cdc42 activities linking fAβ effects with changes in actin dynamics. Here we show fAβ-induces increased activity of PAK1 and cyclin-dependent kinase 5, and that p21-activated kinase (PAK1) activation targets the LIMK1-cofilin signaling pathway. Increased cofilin dephosphorylation under conditions of enhanced LIM-Kinase 1 (LIMK1) activity suggests that fAβ co-stimulate...
PLOS ONE, 2015
Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk facto... more Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby PLOS ONE |
Biometals, 2003
Oxidative stress phenomena have been related with the onset of neurodegenerative diseases. Partic... more Oxidative stress phenomena have been related with the onset of neurodegenerative diseases. Particularly in Alzheimer Disease (AD), oxygen reactive species (ROS) and its derivatives can be found in brain samples of postmortem AD patients. However, the mechanisms by which oxygen reactive species can alter neuronal function are still not elucidated. There is a growing amount of evidence pointing to a role for mitochondrial damage as the source of free radicals involved in oxidative stress. Among the species that participate in the production of oxygen reactive radicals, transition metals are one of the most important. Several reports have implicated the involvement of redox-active metals with the onset of different neurodegenerative diseases such as Alzheimer's Disease (AD), Progressive Supranuclear Palsy (PSP), Amyotrophic Lateral Sclerosis (ALS) and Parkinson's Disease (PD). On the other hand, our previous studies have indicated that Aβ-induced deregulation of the protein kinase Cdk5 associated with tau protein hyperphosphorylation constitute a critical pathway toward neurodegeneration. In the current paper we have shown that iron induces an imbalance in the function of Cdk5/p25 system of hippocampal neurons, resulting in a marked decrease in tau phosphorylation at the typical Alzheimer's epitopes. The loss of phosphorylated tau epitopes correlated with an increase in 4-hydroxy-nonenal (HNE) adducts revealing damage by oxidative stress. This effects on tau phosphorylation patterns seems to be a consequence of a decrease in the Cdk5/p25 complex activity that appears to result from a depletion of the activator p25, a mechanism in which calcium transients could be implicated.
Molecular biology of the cell, 2015
Kinesin-5 is a slow homotetrameric motor protein best known for its essential role in the mitotic... more Kinesin-5 is a slow homotetrameric motor protein best known for its essential role in the mitotic spindle, where it limits the rate at which faster motors can move microtubules. In neurons, experimental suppression of kinesin-5 causes the axon to grow faster by increasing the mobility of microtubules in the axonal shaft and the invasion of microtubules into the growth cone. Does kinesin-5 act differently in dendrites, given that they have a population of minus end-distal microtubules not present in axons? Using rodent primary neurons in culture, we found that inhibition of kinesin-5 during various windows of time produces changes in dendritic morphology and microtubule organization. Specifically, dendrites became shorter and thinner and contained a greater proportion of minus end-distal microtubules, suggesting that kinesin-5 acting normally restrains the number of minus end-distal microtubules that are transported into dendrites. Additional data indicate that, in neurons, CDK5 is t...
The EMBO Journal, 2012
Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein... more Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein response (UPR) stress sensor inositol-requiring enzyme 1α (IRE1α), which functions as an endoribonuclease that splices the mRNA of the transcription factor XBP-1 (X-box-binding protein-1). Through a global proteomic approach we identified the BCL-2 family member PUMA as a novel IRE1α interactor. Immun oprecipitation experiments confirmed this interaction and further detected the association of IRE1α with BIM, another BH3-only protein. BIM and PUMA double-knockout cells failed to maintain sustained XBP-1 mRNA splicing after prolonged ER stress, resulting in early inactivation. Mutation in the BH3 domain of BIM abrogated the physical interaction with IRE1α, inhibiting its effects on XBP-1 mRNA splicing. Unexpectedly, this regulation required BCL-2 and was antagonized by BAD or the BH3 domain mimetic ABT-737. The modulation of IRE1α RNAse activity by BH3-only proteins was recapitulated in a cell-free system suggesting a direct regulation. Moreover, BH3-only proteins controlled XBP-1 mRNA splicing in vivo and affected the ER stress-regulated secretion of antibodies by primary B cells. We conclude that a subset of BCL-2 family members participates in a new UPR-regulatory network, thus assuming apoptosis-unrelated functions.
PLoS ONE, 2014
Protein phosphorylation is the most common post-translational modification that regulates several... more Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5-/- embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5-/- brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.
Pflügers Archiv - European Journal of Physiology, 2014
Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) cha... more Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) chains that play important roles in the regulation of neuronal morphogenesis and function. LC1 is also well known to interact with diverse ionotropic receptors at postsynapse. Much less is known, however, regarding the role of LC1 at presynaptic level where voltage-gated N-type Ca(2+) channels couple membrane depolarization to neurotransmitter release. Here, we investigated whether LC1 interacts with the N-type channels. Co-localization analysis revealed spatial proximity of the two proteins in hippocampal neurons. The interaction between LC1 and the N-type channel was demonstrated using co-immunoprecipitation experiments and in vitro pull-down assays. Detailed biochemical analysis suggested that the interaction occurs through the N-terminal of LC1 and the C-terminal of the pore-forming CaVα1 subunit of the channels. Patch-clamp studies in HEK-293 cells revealed a significant decrease in N-type currents upon LC1 expression, without apparent changes in kinetics. Recordings performed in the presence of MG132 prevented the actions of LC1 suggesting enhanced channel proteasomal degradation. Interestingly, using the yeast two-hybrid system and immunoprecipitation assays in HEK-293 cells, we revealed an interaction between LC1 and the ubiquitin-conjugating enzyme UBE2L3. Furthermore, we found that the LC1/UBE2L3 complex could interact with the N-type channels, suggesting that LC1 may act as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. Together these results revealed a novel functional coupling between LC1 and the N-type channels.
Neurotoxicity Research, 2005
Recent studies show that inflammation has an active role in the onset of neurodegenerative diseas... more Recent studies show that inflammation has an active role in the onset of neurodegenerative diseases. It is known that in response to extracellular insults microglia and/or astrocytes produce inflammatory agents. These contribute to the neuropathological events in the aging process and neuronal degeneration. Interleukin-6 (IL-6) has been involved in the pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Here, we show that IL-6 treatment of rat hippocampal neurons increases the calcium influx via NMDA-receptor, an effect that is prevented by the specific NMDA receptor antagonist MK-801 (dizocilpine). We also show that this calcium influx is mediated by the JAKs/STATs pathway, since the inhibitor of JAKs/ STATs pathway, JAK 3 inhibitor, blocks calcium influx even in the presence of IL-6. This increase in calcium signal was dependent on external sources, since this signal was not observed in the presence of EGTA. Additional studies indicate that the increase in cytosolic calcium induces tau protein hyperphosphorylation, as revealed by using specific antibodies against Alzheimer phosphoepitopes. This anomalous tau hyperphosphorylation was dependent on both the JAKs/STATs pathway and NMDA receptor. These results suggest that IL-6 would induce a cascade of molecular events that produce a calcium influx through NMDA receptors, mediated by the JAKs/STATs pathway, which subsequently modifies the tau hyperphosphorylation patterns.
Molecular Biology of the Cell, 2001
Cultured neurons obtained from a hypomorphous MAP1B mutant mouse line display a selective and sig... more Cultured neurons obtained from a hypomorphous MAP1B mutant mouse line display a selective and significant inhibition of axon formation that reflects a delay in axon outgrowth and a reduced rate of elongation. This phenomenon is paralleled by decreased microtubule formation and dynamics, which is dramatic at the distal axonal segment, as well as in growth cones, where the more recently assembled microtubule polymer normally predominates. These neurons also have aberrant growth cone formation and increased actin-based protrusive activity. Taken together, this study provides direct evidence showing that by promoting microtubule dynamics and regulating cytoskeletal organization MAP1B has a crucial role in axon formation.
Molecular Biology of the Cell, 2010
Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced ... more Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced rate of axonal elongation compared with neurons from wild-type mice. Here we show that MAP1B deficiency results in a significant decrease in Rac1 and cdc42 activity and a significant increase in Rho activity. We found that MAP1B interacted with Tiam1, a guanosine nucleotide exchange factor for Rac1. The decrease in Rac1/cdc42 activity was paralleled by decreases in the phosphorylation of the downstream effectors of these proteins, such as LIMK-1 and cofilin. The expression of a constitutively active form of Rac1, cdc42, or Tiam1 rescued the axon growth defect of MAP1B-deficient neurons. Taken together, these observations define a new and crucial function of MAP1B that we show to be required for efficient cross-talk between microtubules and the actin cytoskeleton during neuronal polarization.
Molecular and Cellular Neuroscience, 2000
into the functions that MAP1B plays in vivo, we analyzed a strain of Map1B mutant mice generated ... more into the functions that MAP1B plays in vivo, we analyzed a strain of Map1B mutant mice generated by a gene trapping approach. Homozygous mice die on the first day after birth, probably due to a severe abnormal development of the nervous system. They present alterations in the structure of several brain regions. The normal Map1B gene yields different protein isoforms from alternatively spliced transcripts. The smaller isoforms were present in wild type, hetero-, and homozygous mice, but their expression was higher in the mutants than in the wild-type. Moreover, trace amounts of MAP1B protein were also observed in Map1B homozygous mutants, indicating an alternative splicing around the gene trap insertion. Thus, the Map1B gene trapped mutation reported in this work did not generated a null mutant, but a mouse with a drastic deficiency in MAP1B expression. Analyses of these mice indicate the presence of several neural defects and suggest the participation of MAP1B in neuronal migration.
Journal of Neurochemistry, 2013
Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that in... more Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimer's disease and Parkinson's disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin-target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron-induced oxidative damage.
Journal of Neurochemistry, 2014
The Emerging Concepts on Neuronal Cytoskeleton Workshop came from the idea that scientists in the... more The Emerging Concepts on Neuronal Cytoskeleton Workshop came from the idea that scientists in the same field should meet regularly to share results and exchange ideas and hypotheses. While there are scientific societies and large meetings that bring together thousands of scientists, small specialized meetings on a specific issue are sometimes infrequent and difficult to attend, especially for graduate and postgraduate students. Accordingly, our Workshop is a great opportunity for Latin American scientists and their trainees to share research on the neuronal cytoskeleton with established researchers coming from all over the world. Our two meetings in 2011 and 2013 have offered a close and friendly environment for interactions and stimulation to forge collaborations among scientists with common goals. Last year, the second workshop was held in Marbella Resort, Maitencillo, Chile from May 26 to 30, 2013. The Program began with a Plenary Lecture by Professor Gary Banker in which he presented his historic and continuing development of hippocampal primary neuronal culture, which is the basis for much significant cellular and molecular neurobiology. Nine sessions of talks and discussions over the next three days considered the roles of the neuronal cytoskeleton in development, maturation and disease states. Oral presentations were given by 29 internationally recognized researchers, and three poster sessions were held for graduate students, postdoctoral trainees and young researchers. The meeting involved 80 participants from Argentina,
Journal of Neurochemistry, 2014
Neuronal cells are characterized by the presence of two confined domains, which are different in ... more Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans-Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP-ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross-talk with RabGTPases.
ABSTRACT Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal... more ABSTRACT Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Frontiers in Cellular Neuroscience, 2015
A proper balance between chemical reduction and oxidation (known as redox balance) is essential f... more A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca(2+) homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons.
PLOS ONE, 2015
Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane de... more Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.
Neuroscience, 2009
Alzheimer disease (AD) is a neurodegenerative disorder characterized by neuronal loss, dementia a... more Alzheimer disease (AD) is a neurodegenerative disorder characterized by neuronal loss, dementia and pain. Two main protein aggregates, extracellular (senile plaques, SP) and intracellular (neurofibrillary tangles, NFT), are associated with AD. NFT are mainly composed of hyperphosphorylated microtubule-associated protein tau. Nowadays several protein kinases have been implicated in the phosphorylation of tau, including glycogen synthase kinase 3 beta (GSK3), MAP kinase, protein kinase A and cyclin-dependent kinase 5 (Cdk5). A deregulation in the activity of Cdk5 has been postulated to participate in the abnormal tau hyperphosphorylation in AD. Activation of Cdk5 occurs after its association with p35, a neuron-specific activator, predominantly in the nervous system. Therefore, in this study we used the tetracycline transactivator system to increase p35/ GFP in neuronal cells, treated with amyloid beta 1-42 (A 1-42 ) peptide. These cells showed an increase of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cleaved caspase-3 staining, indicating increased apoptosis of neuronal cells. This effect could be reversed by the addition of tetracycline in the culture medium, suggesting synergistic effects of p35 over-expression and A treatment in the apoptosis of neuronal cells. These results represent a linkage between amyloidogenic and cdk5 pathways leading to apoptosis of neuronal cells. (C. Gonzalez-Billault). Abbreviations: AD, Alzheimer disease; A, -amyloid peptide; Cdk5, cyclin-dependent kinase 5; CFP, cyan fluorescent protein; CIP, cyclindependent kinase 5 inhibitor peptide; CMV, cytomegalovirus; EGFP, enhanced green fluorescent protein; NFT, neurofibrillary tangles; PBST, 5% nonfat dry milk in PBS with 0.05% Tween-20; tTA, tetracycline dependent transactivator; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling.
Population aging is among the most important global transformations. Compared to European and Nor... more Population aging is among the most important global
transformations. Compared to European and North American
countries, Chile is among the countries with the fastest growth of
life expectancy at birth during recent decades. The aging of Chile’s
population is related to the improvement of living conditions, but
also entails risks that tend to be associated with a rapid economic
growth accompanied by large income inequalities and a chronic
deficit of basic social benefits. The rapid demographic transition
towards an aged population has unfolded in a context of poor development of public policies to tackle the opportunities and needs
associated with an aging society. This article provides a brief
overview of current Chilean public policy on aging, with a focus on
healthy aging as defined by World Health Organization. The
discussion addresses core challenges to successfully achieve
healthy aging in Chile.
Journal of neurochemistry, 2014
Neuronal cells are characterized by the presence of two confined domains, which are different in ... more Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evid...
Journal of Alzheimer's disease : JAD, 2012
The neuronal cytoskeleton regulates numerous processes that occur in normal homeostasis. Under pa... more The neuronal cytoskeleton regulates numerous processes that occur in normal homeostasis. Under pathological conditions such as those of Alzheimer's disease (AD), major alterations in cytoskeleton organization have been observed and changes in both microtubules and actin filaments have been reported. Many neurodegenerative consequences of AD are linked to the production and accumulation of amyloid peptides (Aβ) and their oligomers, produced from the internal cleavage of the amyloid-β protein precursor. We previously reported that fibrillar Aβ1-42 (fAβ) treatment of hippocampal neurons induced an increase in Rac1 and Cdc42 activities linking fAβ effects with changes in actin dynamics. Here we show fAβ-induces increased activity of PAK1 and cyclin-dependent kinase 5, and that p21-activated kinase (PAK1) activation targets the LIMK1-cofilin signaling pathway. Increased cofilin dephosphorylation under conditions of enhanced LIM-Kinase 1 (LIMK1) activity suggests that fAβ co-stimulate...
PLOS ONE, 2015
Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk facto... more Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby PLOS ONE |
Biometals, 2003
Oxidative stress phenomena have been related with the onset of neurodegenerative diseases. Partic... more Oxidative stress phenomena have been related with the onset of neurodegenerative diseases. Particularly in Alzheimer Disease (AD), oxygen reactive species (ROS) and its derivatives can be found in brain samples of postmortem AD patients. However, the mechanisms by which oxygen reactive species can alter neuronal function are still not elucidated. There is a growing amount of evidence pointing to a role for mitochondrial damage as the source of free radicals involved in oxidative stress. Among the species that participate in the production of oxygen reactive radicals, transition metals are one of the most important. Several reports have implicated the involvement of redox-active metals with the onset of different neurodegenerative diseases such as Alzheimer's Disease (AD), Progressive Supranuclear Palsy (PSP), Amyotrophic Lateral Sclerosis (ALS) and Parkinson's Disease (PD). On the other hand, our previous studies have indicated that Aβ-induced deregulation of the protein kinase Cdk5 associated with tau protein hyperphosphorylation constitute a critical pathway toward neurodegeneration. In the current paper we have shown that iron induces an imbalance in the function of Cdk5/p25 system of hippocampal neurons, resulting in a marked decrease in tau phosphorylation at the typical Alzheimer's epitopes. The loss of phosphorylated tau epitopes correlated with an increase in 4-hydroxy-nonenal (HNE) adducts revealing damage by oxidative stress. This effects on tau phosphorylation patterns seems to be a consequence of a decrease in the Cdk5/p25 complex activity that appears to result from a depletion of the activator p25, a mechanism in which calcium transients could be implicated.
Molecular biology of the cell, 2015
Kinesin-5 is a slow homotetrameric motor protein best known for its essential role in the mitotic... more Kinesin-5 is a slow homotetrameric motor protein best known for its essential role in the mitotic spindle, where it limits the rate at which faster motors can move microtubules. In neurons, experimental suppression of kinesin-5 causes the axon to grow faster by increasing the mobility of microtubules in the axonal shaft and the invasion of microtubules into the growth cone. Does kinesin-5 act differently in dendrites, given that they have a population of minus end-distal microtubules not present in axons? Using rodent primary neurons in culture, we found that inhibition of kinesin-5 during various windows of time produces changes in dendritic morphology and microtubule organization. Specifically, dendrites became shorter and thinner and contained a greater proportion of minus end-distal microtubules, suggesting that kinesin-5 acting normally restrains the number of minus end-distal microtubules that are transported into dendrites. Additional data indicate that, in neurons, CDK5 is t...
The EMBO Journal, 2012
Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein... more Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein response (UPR) stress sensor inositol-requiring enzyme 1α (IRE1α), which functions as an endoribonuclease that splices the mRNA of the transcription factor XBP-1 (X-box-binding protein-1). Through a global proteomic approach we identified the BCL-2 family member PUMA as a novel IRE1α interactor. Immun oprecipitation experiments confirmed this interaction and further detected the association of IRE1α with BIM, another BH3-only protein. BIM and PUMA double-knockout cells failed to maintain sustained XBP-1 mRNA splicing after prolonged ER stress, resulting in early inactivation. Mutation in the BH3 domain of BIM abrogated the physical interaction with IRE1α, inhibiting its effects on XBP-1 mRNA splicing. Unexpectedly, this regulation required BCL-2 and was antagonized by BAD or the BH3 domain mimetic ABT-737. The modulation of IRE1α RNAse activity by BH3-only proteins was recapitulated in a cell-free system suggesting a direct regulation. Moreover, BH3-only proteins controlled XBP-1 mRNA splicing in vivo and affected the ER stress-regulated secretion of antibodies by primary B cells. We conclude that a subset of BCL-2 family members participates in a new UPR-regulatory network, thus assuming apoptosis-unrelated functions.
PLoS ONE, 2014
Protein phosphorylation is the most common post-translational modification that regulates several... more Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5-/- embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5-/- brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.
Pflügers Archiv - European Journal of Physiology, 2014
Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) cha... more Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) chains that play important roles in the regulation of neuronal morphogenesis and function. LC1 is also well known to interact with diverse ionotropic receptors at postsynapse. Much less is known, however, regarding the role of LC1 at presynaptic level where voltage-gated N-type Ca(2+) channels couple membrane depolarization to neurotransmitter release. Here, we investigated whether LC1 interacts with the N-type channels. Co-localization analysis revealed spatial proximity of the two proteins in hippocampal neurons. The interaction between LC1 and the N-type channel was demonstrated using co-immunoprecipitation experiments and in vitro pull-down assays. Detailed biochemical analysis suggested that the interaction occurs through the N-terminal of LC1 and the C-terminal of the pore-forming CaVα1 subunit of the channels. Patch-clamp studies in HEK-293 cells revealed a significant decrease in N-type currents upon LC1 expression, without apparent changes in kinetics. Recordings performed in the presence of MG132 prevented the actions of LC1 suggesting enhanced channel proteasomal degradation. Interestingly, using the yeast two-hybrid system and immunoprecipitation assays in HEK-293 cells, we revealed an interaction between LC1 and the ubiquitin-conjugating enzyme UBE2L3. Furthermore, we found that the LC1/UBE2L3 complex could interact with the N-type channels, suggesting that LC1 may act as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. Together these results revealed a novel functional coupling between LC1 and the N-type channels.
Neurotoxicity Research, 2005
Recent studies show that inflammation has an active role in the onset of neurodegenerative diseas... more Recent studies show that inflammation has an active role in the onset of neurodegenerative diseases. It is known that in response to extracellular insults microglia and/or astrocytes produce inflammatory agents. These contribute to the neuropathological events in the aging process and neuronal degeneration. Interleukin-6 (IL-6) has been involved in the pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Here, we show that IL-6 treatment of rat hippocampal neurons increases the calcium influx via NMDA-receptor, an effect that is prevented by the specific NMDA receptor antagonist MK-801 (dizocilpine). We also show that this calcium influx is mediated by the JAKs/STATs pathway, since the inhibitor of JAKs/ STATs pathway, JAK 3 inhibitor, blocks calcium influx even in the presence of IL-6. This increase in calcium signal was dependent on external sources, since this signal was not observed in the presence of EGTA. Additional studies indicate that the increase in cytosolic calcium induces tau protein hyperphosphorylation, as revealed by using specific antibodies against Alzheimer phosphoepitopes. This anomalous tau hyperphosphorylation was dependent on both the JAKs/STATs pathway and NMDA receptor. These results suggest that IL-6 would induce a cascade of molecular events that produce a calcium influx through NMDA receptors, mediated by the JAKs/STATs pathway, which subsequently modifies the tau hyperphosphorylation patterns.
Molecular Biology of the Cell, 2001
Cultured neurons obtained from a hypomorphous MAP1B mutant mouse line display a selective and sig... more Cultured neurons obtained from a hypomorphous MAP1B mutant mouse line display a selective and significant inhibition of axon formation that reflects a delay in axon outgrowth and a reduced rate of elongation. This phenomenon is paralleled by decreased microtubule formation and dynamics, which is dramatic at the distal axonal segment, as well as in growth cones, where the more recently assembled microtubule polymer normally predominates. These neurons also have aberrant growth cone formation and increased actin-based protrusive activity. Taken together, this study provides direct evidence showing that by promoting microtubule dynamics and regulating cytoskeletal organization MAP1B has a crucial role in axon formation.
Molecular Biology of the Cell, 2010
Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced ... more Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced rate of axonal elongation compared with neurons from wild-type mice. Here we show that MAP1B deficiency results in a significant decrease in Rac1 and cdc42 activity and a significant increase in Rho activity. We found that MAP1B interacted with Tiam1, a guanosine nucleotide exchange factor for Rac1. The decrease in Rac1/cdc42 activity was paralleled by decreases in the phosphorylation of the downstream effectors of these proteins, such as LIMK-1 and cofilin. The expression of a constitutively active form of Rac1, cdc42, or Tiam1 rescued the axon growth defect of MAP1B-deficient neurons. Taken together, these observations define a new and crucial function of MAP1B that we show to be required for efficient cross-talk between microtubules and the actin cytoskeleton during neuronal polarization.
Molecular and Cellular Neuroscience, 2000
into the functions that MAP1B plays in vivo, we analyzed a strain of Map1B mutant mice generated ... more into the functions that MAP1B plays in vivo, we analyzed a strain of Map1B mutant mice generated by a gene trapping approach. Homozygous mice die on the first day after birth, probably due to a severe abnormal development of the nervous system. They present alterations in the structure of several brain regions. The normal Map1B gene yields different protein isoforms from alternatively spliced transcripts. The smaller isoforms were present in wild type, hetero-, and homozygous mice, but their expression was higher in the mutants than in the wild-type. Moreover, trace amounts of MAP1B protein were also observed in Map1B homozygous mutants, indicating an alternative splicing around the gene trap insertion. Thus, the Map1B gene trapped mutation reported in this work did not generated a null mutant, but a mouse with a drastic deficiency in MAP1B expression. Analyses of these mice indicate the presence of several neural defects and suggest the participation of MAP1B in neuronal migration.
Journal of Neurochemistry, 2013
Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that in... more Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimer's disease and Parkinson's disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin-target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron-induced oxidative damage.
Journal of Neurochemistry, 2014
The Emerging Concepts on Neuronal Cytoskeleton Workshop came from the idea that scientists in the... more The Emerging Concepts on Neuronal Cytoskeleton Workshop came from the idea that scientists in the same field should meet regularly to share results and exchange ideas and hypotheses. While there are scientific societies and large meetings that bring together thousands of scientists, small specialized meetings on a specific issue are sometimes infrequent and difficult to attend, especially for graduate and postgraduate students. Accordingly, our Workshop is a great opportunity for Latin American scientists and their trainees to share research on the neuronal cytoskeleton with established researchers coming from all over the world. Our two meetings in 2011 and 2013 have offered a close and friendly environment for interactions and stimulation to forge collaborations among scientists with common goals. Last year, the second workshop was held in Marbella Resort, Maitencillo, Chile from May 26 to 30, 2013. The Program began with a Plenary Lecture by Professor Gary Banker in which he presented his historic and continuing development of hippocampal primary neuronal culture, which is the basis for much significant cellular and molecular neurobiology. Nine sessions of talks and discussions over the next three days considered the roles of the neuronal cytoskeleton in development, maturation and disease states. Oral presentations were given by 29 internationally recognized researchers, and three poster sessions were held for graduate students, postdoctoral trainees and young researchers. The meeting involved 80 participants from Argentina,
Journal of Neurochemistry, 2014
Neuronal cells are characterized by the presence of two confined domains, which are different in ... more Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans-Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP-ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross-talk with RabGTPases.