Christophe Breton - Academia.edu (original) (raw)
Papers by Christophe Breton
Current Genomics, 2019
According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and... more According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and the resulting accelerated growth in neonates predispose offspring to obesity and associated metabolic diseases that may persist across generations. In this context, the adipose tissue has emerged as an important player due to its involvement in metabolic health, and its high potential for plasticity and adaptation to environmental cues. Recent years have seen a growing interest in how maternal obesity induces long-lasting adipose tissue remodeling in offspring and how these modifications could be transmitted to subsequent generations in an inter- or transgenerational manner. In particular, epigenetic mechanisms are thought to be key players in the developmental programming of adipose tissue, which may partially mediate parts of the transgenerational inheritance of obesity. This review presents data supporting the role of maternal obesity in the developmental programming of adipose tissu...
Cells
Human induced pluripotent stem cells (hiPSCs) have the potential to be differentiated into any ce... more Human induced pluripotent stem cells (hiPSCs) have the potential to be differentiated into any cell type, making them a relevant tool for therapeutic purposes such as cell-based therapies. In particular, they show great promise for obesity treatment as they represent an unlimited source of brown/beige adipose progenitors (hiPSC-BAPs). However, the low brown/beige adipocyte differentiation potential in 2D cultures represents a strong limitation for clinical use. In adipose tissue, besides its cell cycle regulator functions, the cyclin-dependent kinase inhibitor 2A (CDKN2A) locus modulates the commitment of stem cells to the brown-like type fate, mature adipocyte energy metabolism and the browning of adipose tissue. Here, using a new method of hiPSC-BAPs 3D culture, via the formation of an organoid-like structure, we silenced CDKN2A expression during hiPSC-BAP adipogenic differentiation and observed that knocking down CDKN2A potentiates adipogenesis, oxidative metabolism and the brown...
The Journal of Immunology
We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activit... more We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17β-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17α-estradiol had no effect. 17β-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17β-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17β-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores a...
Biomolecules, 2020
Besides its role as a cell cycle and proliferation regulator, the INK4a/ARF (CDKN2A) locus and it... more Besides its role as a cell cycle and proliferation regulator, the INK4a/ARF (CDKN2A) locus and its associated pathways are thought to play additional functions in the control of energy homeostasis. Genome-wide association studies in humans and rodents have revealed that single nucleotide polymorphisms in this locus are risk factors for obesity and related metabolic diseases including cardiovascular complications and type-2 diabetes (T2D). Recent studies showed that both p16INK4a-CDK4-E2F1/pRB and p19ARF-P53 (p14ARF in humans) related pathways regulate adipose tissue (AT) physiology and adipocyte functions such as lipid storage, inflammation, oxidative activity, and cellular plasticity (browning). Targeting these metabolic pathways in AT emerged as a new putative therapy to alleviate the effects of obesity and prevent T2D. This review aims to provide an overview of the literature linking the INK4a/ARF locus with AT functions, focusing on its mechanisms of action in the regulation of ...
Blood, 2000
We tested the hypothesis that estrogen acutely stimulates constitutive nitric oxide synthase acti... more We tested the hypothesis that estrogen acutely stimulates constitutive nitric oxide synthase activity in human granulocytes by acting on a cell surface estrogen receptor (ER). The release of nitric oxide was measured in real time with an amperometric probe. Exposure of granulocytes to 17β-estradiol stimulated NO release within seconds in a concentration-dependent manner. The NO release was also stimulated by 17β-estradiol conjugated to bovine serum albumin (E2-BSA), which suggests mediation by a cell surface receptor. Tamoxifen, an ER inhibitor, antagonized the action of both 17β-estradiol and E2-BSA, whereas ICI 182,780, an inhibitor of the nuclear ER, had no effect. Using dual emission microfluorometry in a calcium-free medium, the 17β-estradiol–stimulated release of NO from granulocytes was shown to be dependent on intracellular calcium ([Ca2+]i) transients in a tamoxifen-sensitive process. Exposure to BAPTA-AM (1,2bis-(-aminophenoxy)ethans-N,N,N′,N′-tetraacetic acid tetra(acetox...
Cancer research, Jan 15, 2002
The objective of the present work was to investigate the existence of an oxytocin (OT)-mediated a... more The objective of the present work was to investigate the existence of an oxytocin (OT)-mediated autocrine/paracrine signaling upon small cell carcinoma of the lung (SCCL) cell growth. In that view, OT receptor (OTR) expression, concomitant with OT synthesis and secretion, was evidenced on three different SCCL cell lines (DMS79, H146, and H345) and related to the vasopressin (VP) system. Specific OT, VP, OTR, V1a VP receptor (V1aR), and V1b/V3 VP receptor (V1bR/V3R) transcripts were identified by reverse transcription-PCR in all cell lines studied. Binding of 125I-(d(CH2)(5)(1), Tyr(Me)(2),Thr(4),Orn(8),Tyr(9)-NH2)-vasotocin (OVTA) was observed on all SCCL cell lines, with a K(d) (dissociation constant) ranging from 0.025-0.089 nM, depending on the cell line and the analytical method. Selectivity of 125I-OVTA binding was confirmed by displacement curves obtained with various OTR and VP receptor agonists and antagonists (OT, OVTA, L-371,257, VP, F180). Immunocytochemistry identified c...
Journal of Endocrinology, 2012
Epidemiological studies initially demonstrated that maternal undernutrition leading to low birth ... more Epidemiological studies initially demonstrated that maternal undernutrition leading to low birth weight may predispose for energy balance disorders throughout life. High birth weight due to maternal obesity or diabetes, inappropriate early post-natal nutrition and rapid catch-up growth may also sensitise to increased risk of obesity. As stated by the Developmental Origin of Health and Disease concept, the perinatal perturbation of foetus/neonate nutrient supply might be a crucial determinant of individual programming of body weight set point. The hypothalamus–adipose axis plays a pivotal role in the maintenance of energy homoeostasis controlling the nutritional status and energy storage level. The perinatal period largely corresponds to the period of brain maturation, neuronal differentiation and active adipogenesis in rodents. Numerous dams and/or foetus/neonate dietary manipulation models were developed to investigate the mechanisms underlying perinatal programming in rodents. The...
The Journal of Clinical Endocrinology & Metabolism, 1999
The nature of vasopressin (VP) receptors present in normal and tumoral human adrenal was investig... more The nature of vasopressin (VP) receptors present in normal and tumoral human adrenal was investigated using various experimental approaches. Specific VP-binding sites were detected by autoradiography using [ 3 H]arginine VP as a radioligand in adrenal cortex and medulla. The V1a receptor subtype was expressed in the two parts of the gland, as shown by pharmacological studies and RT-PCR experiments. By contrast, the V1b receptor subtype was only expressed in medullary chromaffin cells. This was confirmed by the characterization of V1b transcripts detected in adrenal medulla tissues. In pheochromocytoma, we also detected functional V1b receptors. These receptors triggered intracellular calcium mobilization from intracellular pools and were involved in catecholamine secretion. Binding
Journal of Biological Chemistry, 1999
A novel photoactivatable linear peptide antagonist selective for the V 1a vasopressin receptor, [... more A novel photoactivatable linear peptide antagonist selective for the V 1a vasopressin receptor, [ 125 I][Lys(3N 3 Phpa) 8 ]HO-LVA, was synthesized, characterized, and used to photolabel the human receptor expressed in Chinese hamster ovary cells. Two specific glycosylated protein species at 85-90 and 46 kDa were covalently labeled, a result identical to that obtained with a previous photosensitive ligand, [ 125 I]3N 3
Journal of Biological Chemistry, 2001
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin re... more Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH 2) 5 [Tyr(Me) 2 ,Thr 4 ,Orn 8 ,Phe(3 125 I,4N 3)-NH 2 9 ]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V 1a vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V 1a receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75-and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu 114-Val 115-Lys 116. Analysis of contact sites in the V 1a receptor led to the identification of the homologous region consisting of the residues Val 126-Val 127-Lys 128. Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V 1a receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.
Endocrinology, 1997
The neuropeptide oxytocin (OT) exerts its various neurotransmitter functions via specific OT rece... more The neuropeptide oxytocin (OT) exerts its various neurotransmitter functions via specific OT receptors (OTRs) that have been localized to distinct brain regions, including the ventromedial hypothalamus, the bed nucleus of stria terminalis, the amygdala, the subiculum, the hippocampus, and the olfactory nuclei. In the present study, we have characterized OTR gene expression by Northern blot and by semiquantitative RT-PCR in these brain regions and studied its regulation in response to estrogen (E 2), progesterone, and the antiestrogen tamoxifen. We find that all regions analyzed express two messenger RNA (mRNA) bands (6.7 and 4.8 kb) that hybridize to a rat OTR complementary DNA probe and that correspond in size to two of the three OTR mRNA bands expressed in rat uterus. Analysis by RT-PCR, with two different primer pairs, did not reveal any structural differences between the coding regions of uterine and brain OTR mRNA. E 2 treatment and gestation led to an 8-fold and a 6.5-fold increase in OTR mRNA levels, respectively. Progesterone was without effect, if administered alone, and did not influence the E 2-induced rise in OTR mRNA. The E 2 effect was restricted to E 2-sensitive regions, such as the hypothalamus, and was not observed in the subiculum or the olfactory nuclei. Tamoxifen had a dual effect: on the one hand, it acted as a partial agonist in raising OTR mRNA levels in the hypothalamus of ovariectomized animals; on the other hand, it suppressed the E 2-induced OTR mRNA rise in E 2-sensitive brain regions. Although the present data do not exclude the possible existence of OTR subtype(s) in brain, they show that the uterine-type OTR gene is expressed in all major OTR-containing brain regions. Moreover, they show that region-specific regulation of OTR gene expression underlies the previously observed region-specific steroid regulation of central OT binding sites.
Diabetes, 2012
The τ pathology found in Alzheimer disease (AD) is crucial in cognitive decline. Midlife developm... more The τ pathology found in Alzheimer disease (AD) is crucial in cognitive decline. Midlife development of obesity, a major risk factor of insulin resistance and type 2 diabetes, increases the risk of dementia and AD later in life. The impact of obesity on AD risk has been suggested to be related to central insulin resistance, secondary to peripheral insulin resistance. The effects of diet-induced obesity (DIO) on τ pathology remain unknown. In this study, we evaluated effects of a high-fat diet, given at an early pathological stage, in the THY-Tau22 transgenic mouse model of progressive AD-like τ pathology. We found that early and progressive obesity potentiated spatial learning deficits as well as hippocampal τ pathology at a later stage. Surprisingly, THY-Tau22 mice did not exhibit peripheral insulin resistance. Further, pathological worsening occurred while hippocampal insulin signaling was upregulated. Together, our data demonstrate that DIO worsens τ phosphorylation and learning ...
Circulation, 2000
Background —Although estrogen replacement therapy has been associated with reduction of cardiovas... more Background —Although estrogen replacement therapy has been associated with reduction of cardiovascular events in postmenopausal women, the mechanism for this benefit remains unclear. Because nitric oxide (NO) is considered an important endothelium-derived relaxing factor and may function to protect blood vessels against atherosclerotic development, we investigated the acute effects of physiological levels of estrogen on NO release from human internal thoracic artery endothelia and human arterial endothelia in culture. Methods and Results —We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase activity in human endothelial cells by acting on a cell-surface receptor. NO release was measured in real time with an amperometric probe. 17β-Estradiol exposure to internal thoracic artery endothelia and human arterial endothelia in culture stimulated NO release within seconds in a concentration-dependent manner. 17β-Estradiol conjugated to bovine serum albumin also...
Human epidemiological studies have shown that low birth weight is associated with hypertension in... more Human epidemiological studies have shown that low birth weight is associated with hypertension in adulthood. Rodent models of intrauterine growth retardation (IUGR) support these findings because offspring from undernourished dams develop hypertension. Angiotensin-converting enzyme 2 (ACE2) is a newly described renin-angiotensin system (RAS) component that competes with ACE for angiotensin peptide hydrolysis and therefore may modulate blood pressure. However, ACE2 potential participation in hypertension programming remains unknown, although RAS alterations were reported in IUGR models. Hence, we first investigated the tissue distribution of ACE2 and ACE in the rat and then whether hypertension programming differentially affects both enzymes. Using multiplex RT-PCR and in situ hybridization, we show that ACE2 mRNA is widely expressed and coregionalized with ACE. Moreover, tissues involved in blood pressure homeostasis (lung, heart, and kidney) express high levels of both enzymes. Enz...
European Journal of Nutrition, 2018
Purpose Poor maternal nutrition sensitises to the development of metabolic diseases and obesity i... more Purpose Poor maternal nutrition sensitises to the development of metabolic diseases and obesity in adulthood over several generations. The prevalence increases when offspring is fed with a high-fat (HF) diet after weaning. This study aims to determine whether such metabolic profiles can be transmitted to the second generation and even aggravated when the mothers were exposed to overnutrition, with attention to potential sex differences. Methods Pregnant Wistar rats were subjected to ad libitum (control) or 70% food-restricted diet (FR) during gestation (F0). At weaning, F1 females were allocated to three food protocols: (1) standard diet prior to and throughout gestation and lactation, (2) HF diet prior to and standard diet throughout gestation and lactation, and (3) HF diet prior to and throughout gestation and lactation. F2 offspring was studied between 16 and 32 weeks of age. Results FR-F2 offspring on standard diet showed normal adiposity and had no significant metabolic alterations in adulthood. Maternal HF diet resulted in sex-specific effects with metabolic disturbances more apparent in control offspring exposed to HF diet during gestation and lactation. Control offspring displayed glucose intolerance associated with insulin resistance in females. Female livers overexpressed lipogenesis genes and those of males the genes involved in lipid oxidation. Gene expression was significantly attenuated in the FR livers. Increased physical activity associated with elevated corticosterone levels was observed in FR females on standard diet and in all females from overnourished mothers. Conclusions Maternal undernutrition during gestation (F0) improves the metabolic health of second-generation offspring with more beneficial effects in females.
Nutrients, 2019
According to the “developmental origins of health and disease” (DOHaD) concept, maternal obesity ... more According to the “developmental origins of health and disease” (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born t...
Journal of Developmental Origins of Health and Disease, 2017
Based on the Developmental Origin of Health and Disease concept, maternal undernutrition has been... more Based on the Developmental Origin of Health and Disease concept, maternal undernutrition has been shown to sensitize adult offspring to metabolic pathologies such as obesity. Using a model of maternal 70% food restriction in pregnant female rats throughout gestation (called FR30), we previously reported that obesity-prone adult male rat offspring displayed hyperleptinemia with modifications in leptin and leptin receptor messenger RNA (mRNA) levels in white adipose tissue (WAT). Apelin is a member of the adipokine family that regulates various aspects of energy metabolism and WAT functionality. We investigated whether apelin and its receptor APJ could be a target of maternal undernutrition. Adult male rat offspring from FR30 dams showed increased plasma apelin levels and apelin gene expression in WAT. Post-weaning high-fat diet led to marked increase in APJ mRNA and protein levels in offspring’s WAT. We demonstrate that maternal undernutrition and post-weaning diet have long-term con...
Clinical epigenetics, 2016
Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effec... more Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effects of obesity on fertility and pregnancy issue, preconceptional weight loss is recommended to obese women. Whether this weight loss is beneficial/detrimental for offspring remains poorly explored. Epigenetic mechanisms could be affected by maternal weight changes, perturbing expression of key developmental genes in the placenta or fetus. Our aim was to investigate the effects of chronic maternal obesity on feto-placental growth along with the underlying epigenetic mechanisms. We also tested whether preconceptional weight loss could alleviate these effects. Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a high-fat diet switched to a control diet 2 months before conception (weight loss (WL) group). At mating, OB females presented an obese phenotype while WL females normalized metabolic parameters. At embryonic day 18.5 (E18.5), fetuses from ...
Current Genomics, 2019
According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and... more According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and the resulting accelerated growth in neonates predispose offspring to obesity and associated metabolic diseases that may persist across generations. In this context, the adipose tissue has emerged as an important player due to its involvement in metabolic health, and its high potential for plasticity and adaptation to environmental cues. Recent years have seen a growing interest in how maternal obesity induces long-lasting adipose tissue remodeling in offspring and how these modifications could be transmitted to subsequent generations in an inter- or transgenerational manner. In particular, epigenetic mechanisms are thought to be key players in the developmental programming of adipose tissue, which may partially mediate parts of the transgenerational inheritance of obesity. This review presents data supporting the role of maternal obesity in the developmental programming of adipose tissu...
Cells
Human induced pluripotent stem cells (hiPSCs) have the potential to be differentiated into any ce... more Human induced pluripotent stem cells (hiPSCs) have the potential to be differentiated into any cell type, making them a relevant tool for therapeutic purposes such as cell-based therapies. In particular, they show great promise for obesity treatment as they represent an unlimited source of brown/beige adipose progenitors (hiPSC-BAPs). However, the low brown/beige adipocyte differentiation potential in 2D cultures represents a strong limitation for clinical use. In adipose tissue, besides its cell cycle regulator functions, the cyclin-dependent kinase inhibitor 2A (CDKN2A) locus modulates the commitment of stem cells to the brown-like type fate, mature adipocyte energy metabolism and the browning of adipose tissue. Here, using a new method of hiPSC-BAPs 3D culture, via the formation of an organoid-like structure, we silenced CDKN2A expression during hiPSC-BAP adipogenic differentiation and observed that knocking down CDKN2A potentiates adipogenesis, oxidative metabolism and the brown...
The Journal of Immunology
We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activit... more We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17β-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17α-estradiol had no effect. 17β-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17β-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17β-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores a...
Biomolecules, 2020
Besides its role as a cell cycle and proliferation regulator, the INK4a/ARF (CDKN2A) locus and it... more Besides its role as a cell cycle and proliferation regulator, the INK4a/ARF (CDKN2A) locus and its associated pathways are thought to play additional functions in the control of energy homeostasis. Genome-wide association studies in humans and rodents have revealed that single nucleotide polymorphisms in this locus are risk factors for obesity and related metabolic diseases including cardiovascular complications and type-2 diabetes (T2D). Recent studies showed that both p16INK4a-CDK4-E2F1/pRB and p19ARF-P53 (p14ARF in humans) related pathways regulate adipose tissue (AT) physiology and adipocyte functions such as lipid storage, inflammation, oxidative activity, and cellular plasticity (browning). Targeting these metabolic pathways in AT emerged as a new putative therapy to alleviate the effects of obesity and prevent T2D. This review aims to provide an overview of the literature linking the INK4a/ARF locus with AT functions, focusing on its mechanisms of action in the regulation of ...
Blood, 2000
We tested the hypothesis that estrogen acutely stimulates constitutive nitric oxide synthase acti... more We tested the hypothesis that estrogen acutely stimulates constitutive nitric oxide synthase activity in human granulocytes by acting on a cell surface estrogen receptor (ER). The release of nitric oxide was measured in real time with an amperometric probe. Exposure of granulocytes to 17β-estradiol stimulated NO release within seconds in a concentration-dependent manner. The NO release was also stimulated by 17β-estradiol conjugated to bovine serum albumin (E2-BSA), which suggests mediation by a cell surface receptor. Tamoxifen, an ER inhibitor, antagonized the action of both 17β-estradiol and E2-BSA, whereas ICI 182,780, an inhibitor of the nuclear ER, had no effect. Using dual emission microfluorometry in a calcium-free medium, the 17β-estradiol–stimulated release of NO from granulocytes was shown to be dependent on intracellular calcium ([Ca2+]i) transients in a tamoxifen-sensitive process. Exposure to BAPTA-AM (1,2bis-(-aminophenoxy)ethans-N,N,N′,N′-tetraacetic acid tetra(acetox...
Cancer research, Jan 15, 2002
The objective of the present work was to investigate the existence of an oxytocin (OT)-mediated a... more The objective of the present work was to investigate the existence of an oxytocin (OT)-mediated autocrine/paracrine signaling upon small cell carcinoma of the lung (SCCL) cell growth. In that view, OT receptor (OTR) expression, concomitant with OT synthesis and secretion, was evidenced on three different SCCL cell lines (DMS79, H146, and H345) and related to the vasopressin (VP) system. Specific OT, VP, OTR, V1a VP receptor (V1aR), and V1b/V3 VP receptor (V1bR/V3R) transcripts were identified by reverse transcription-PCR in all cell lines studied. Binding of 125I-(d(CH2)(5)(1), Tyr(Me)(2),Thr(4),Orn(8),Tyr(9)-NH2)-vasotocin (OVTA) was observed on all SCCL cell lines, with a K(d) (dissociation constant) ranging from 0.025-0.089 nM, depending on the cell line and the analytical method. Selectivity of 125I-OVTA binding was confirmed by displacement curves obtained with various OTR and VP receptor agonists and antagonists (OT, OVTA, L-371,257, VP, F180). Immunocytochemistry identified c...
Journal of Endocrinology, 2012
Epidemiological studies initially demonstrated that maternal undernutrition leading to low birth ... more Epidemiological studies initially demonstrated that maternal undernutrition leading to low birth weight may predispose for energy balance disorders throughout life. High birth weight due to maternal obesity or diabetes, inappropriate early post-natal nutrition and rapid catch-up growth may also sensitise to increased risk of obesity. As stated by the Developmental Origin of Health and Disease concept, the perinatal perturbation of foetus/neonate nutrient supply might be a crucial determinant of individual programming of body weight set point. The hypothalamus–adipose axis plays a pivotal role in the maintenance of energy homoeostasis controlling the nutritional status and energy storage level. The perinatal period largely corresponds to the period of brain maturation, neuronal differentiation and active adipogenesis in rodents. Numerous dams and/or foetus/neonate dietary manipulation models were developed to investigate the mechanisms underlying perinatal programming in rodents. The...
The Journal of Clinical Endocrinology & Metabolism, 1999
The nature of vasopressin (VP) receptors present in normal and tumoral human adrenal was investig... more The nature of vasopressin (VP) receptors present in normal and tumoral human adrenal was investigated using various experimental approaches. Specific VP-binding sites were detected by autoradiography using [ 3 H]arginine VP as a radioligand in adrenal cortex and medulla. The V1a receptor subtype was expressed in the two parts of the gland, as shown by pharmacological studies and RT-PCR experiments. By contrast, the V1b receptor subtype was only expressed in medullary chromaffin cells. This was confirmed by the characterization of V1b transcripts detected in adrenal medulla tissues. In pheochromocytoma, we also detected functional V1b receptors. These receptors triggered intracellular calcium mobilization from intracellular pools and were involved in catecholamine secretion. Binding
Journal of Biological Chemistry, 1999
A novel photoactivatable linear peptide antagonist selective for the V 1a vasopressin receptor, [... more A novel photoactivatable linear peptide antagonist selective for the V 1a vasopressin receptor, [ 125 I][Lys(3N 3 Phpa) 8 ]HO-LVA, was synthesized, characterized, and used to photolabel the human receptor expressed in Chinese hamster ovary cells. Two specific glycosylated protein species at 85-90 and 46 kDa were covalently labeled, a result identical to that obtained with a previous photosensitive ligand, [ 125 I]3N 3
Journal of Biological Chemistry, 2001
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin re... more Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH 2) 5 [Tyr(Me) 2 ,Thr 4 ,Orn 8 ,Phe(3 125 I,4N 3)-NH 2 9 ]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V 1a vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V 1a receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75-and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu 114-Val 115-Lys 116. Analysis of contact sites in the V 1a receptor led to the identification of the homologous region consisting of the residues Val 126-Val 127-Lys 128. Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V 1a receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.
Endocrinology, 1997
The neuropeptide oxytocin (OT) exerts its various neurotransmitter functions via specific OT rece... more The neuropeptide oxytocin (OT) exerts its various neurotransmitter functions via specific OT receptors (OTRs) that have been localized to distinct brain regions, including the ventromedial hypothalamus, the bed nucleus of stria terminalis, the amygdala, the subiculum, the hippocampus, and the olfactory nuclei. In the present study, we have characterized OTR gene expression by Northern blot and by semiquantitative RT-PCR in these brain regions and studied its regulation in response to estrogen (E 2), progesterone, and the antiestrogen tamoxifen. We find that all regions analyzed express two messenger RNA (mRNA) bands (6.7 and 4.8 kb) that hybridize to a rat OTR complementary DNA probe and that correspond in size to two of the three OTR mRNA bands expressed in rat uterus. Analysis by RT-PCR, with two different primer pairs, did not reveal any structural differences between the coding regions of uterine and brain OTR mRNA. E 2 treatment and gestation led to an 8-fold and a 6.5-fold increase in OTR mRNA levels, respectively. Progesterone was without effect, if administered alone, and did not influence the E 2-induced rise in OTR mRNA. The E 2 effect was restricted to E 2-sensitive regions, such as the hypothalamus, and was not observed in the subiculum or the olfactory nuclei. Tamoxifen had a dual effect: on the one hand, it acted as a partial agonist in raising OTR mRNA levels in the hypothalamus of ovariectomized animals; on the other hand, it suppressed the E 2-induced OTR mRNA rise in E 2-sensitive brain regions. Although the present data do not exclude the possible existence of OTR subtype(s) in brain, they show that the uterine-type OTR gene is expressed in all major OTR-containing brain regions. Moreover, they show that region-specific regulation of OTR gene expression underlies the previously observed region-specific steroid regulation of central OT binding sites.
Diabetes, 2012
The τ pathology found in Alzheimer disease (AD) is crucial in cognitive decline. Midlife developm... more The τ pathology found in Alzheimer disease (AD) is crucial in cognitive decline. Midlife development of obesity, a major risk factor of insulin resistance and type 2 diabetes, increases the risk of dementia and AD later in life. The impact of obesity on AD risk has been suggested to be related to central insulin resistance, secondary to peripheral insulin resistance. The effects of diet-induced obesity (DIO) on τ pathology remain unknown. In this study, we evaluated effects of a high-fat diet, given at an early pathological stage, in the THY-Tau22 transgenic mouse model of progressive AD-like τ pathology. We found that early and progressive obesity potentiated spatial learning deficits as well as hippocampal τ pathology at a later stage. Surprisingly, THY-Tau22 mice did not exhibit peripheral insulin resistance. Further, pathological worsening occurred while hippocampal insulin signaling was upregulated. Together, our data demonstrate that DIO worsens τ phosphorylation and learning ...
Circulation, 2000
Background —Although estrogen replacement therapy has been associated with reduction of cardiovas... more Background —Although estrogen replacement therapy has been associated with reduction of cardiovascular events in postmenopausal women, the mechanism for this benefit remains unclear. Because nitric oxide (NO) is considered an important endothelium-derived relaxing factor and may function to protect blood vessels against atherosclerotic development, we investigated the acute effects of physiological levels of estrogen on NO release from human internal thoracic artery endothelia and human arterial endothelia in culture. Methods and Results —We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase activity in human endothelial cells by acting on a cell-surface receptor. NO release was measured in real time with an amperometric probe. 17β-Estradiol exposure to internal thoracic artery endothelia and human arterial endothelia in culture stimulated NO release within seconds in a concentration-dependent manner. 17β-Estradiol conjugated to bovine serum albumin also...
Human epidemiological studies have shown that low birth weight is associated with hypertension in... more Human epidemiological studies have shown that low birth weight is associated with hypertension in adulthood. Rodent models of intrauterine growth retardation (IUGR) support these findings because offspring from undernourished dams develop hypertension. Angiotensin-converting enzyme 2 (ACE2) is a newly described renin-angiotensin system (RAS) component that competes with ACE for angiotensin peptide hydrolysis and therefore may modulate blood pressure. However, ACE2 potential participation in hypertension programming remains unknown, although RAS alterations were reported in IUGR models. Hence, we first investigated the tissue distribution of ACE2 and ACE in the rat and then whether hypertension programming differentially affects both enzymes. Using multiplex RT-PCR and in situ hybridization, we show that ACE2 mRNA is widely expressed and coregionalized with ACE. Moreover, tissues involved in blood pressure homeostasis (lung, heart, and kidney) express high levels of both enzymes. Enz...
European Journal of Nutrition, 2018
Purpose Poor maternal nutrition sensitises to the development of metabolic diseases and obesity i... more Purpose Poor maternal nutrition sensitises to the development of metabolic diseases and obesity in adulthood over several generations. The prevalence increases when offspring is fed with a high-fat (HF) diet after weaning. This study aims to determine whether such metabolic profiles can be transmitted to the second generation and even aggravated when the mothers were exposed to overnutrition, with attention to potential sex differences. Methods Pregnant Wistar rats were subjected to ad libitum (control) or 70% food-restricted diet (FR) during gestation (F0). At weaning, F1 females were allocated to three food protocols: (1) standard diet prior to and throughout gestation and lactation, (2) HF diet prior to and standard diet throughout gestation and lactation, and (3) HF diet prior to and throughout gestation and lactation. F2 offspring was studied between 16 and 32 weeks of age. Results FR-F2 offspring on standard diet showed normal adiposity and had no significant metabolic alterations in adulthood. Maternal HF diet resulted in sex-specific effects with metabolic disturbances more apparent in control offspring exposed to HF diet during gestation and lactation. Control offspring displayed glucose intolerance associated with insulin resistance in females. Female livers overexpressed lipogenesis genes and those of males the genes involved in lipid oxidation. Gene expression was significantly attenuated in the FR livers. Increased physical activity associated with elevated corticosterone levels was observed in FR females on standard diet and in all females from overnourished mothers. Conclusions Maternal undernutrition during gestation (F0) improves the metabolic health of second-generation offspring with more beneficial effects in females.
Nutrients, 2019
According to the “developmental origins of health and disease” (DOHaD) concept, maternal obesity ... more According to the “developmental origins of health and disease” (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born t...
Journal of Developmental Origins of Health and Disease, 2017
Based on the Developmental Origin of Health and Disease concept, maternal undernutrition has been... more Based on the Developmental Origin of Health and Disease concept, maternal undernutrition has been shown to sensitize adult offspring to metabolic pathologies such as obesity. Using a model of maternal 70% food restriction in pregnant female rats throughout gestation (called FR30), we previously reported that obesity-prone adult male rat offspring displayed hyperleptinemia with modifications in leptin and leptin receptor messenger RNA (mRNA) levels in white adipose tissue (WAT). Apelin is a member of the adipokine family that regulates various aspects of energy metabolism and WAT functionality. We investigated whether apelin and its receptor APJ could be a target of maternal undernutrition. Adult male rat offspring from FR30 dams showed increased plasma apelin levels and apelin gene expression in WAT. Post-weaning high-fat diet led to marked increase in APJ mRNA and protein levels in offspring’s WAT. We demonstrate that maternal undernutrition and post-weaning diet have long-term con...
Clinical epigenetics, 2016
Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effec... more Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effects of obesity on fertility and pregnancy issue, preconceptional weight loss is recommended to obese women. Whether this weight loss is beneficial/detrimental for offspring remains poorly explored. Epigenetic mechanisms could be affected by maternal weight changes, perturbing expression of key developmental genes in the placenta or fetus. Our aim was to investigate the effects of chronic maternal obesity on feto-placental growth along with the underlying epigenetic mechanisms. We also tested whether preconceptional weight loss could alleviate these effects. Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a high-fat diet switched to a control diet 2 months before conception (weight loss (WL) group). At mating, OB females presented an obese phenotype while WL females normalized metabolic parameters. At embryonic day 18.5 (E18.5), fetuses from ...