Christophe Lacomme - Academia.edu (original) (raw)
Papers by Christophe Lacomme
Plant physiology, 2005
We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for t... more We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and systemic movement without causing excessive symptoms. Phytoene desaturase silencing leading to photobleaching was used as a phenotypic marker alongside reverse transcription-PCR data to characterize the silencing response at the molecular level. Barley cultivar Clansman, harboring the Mla13 resistance gene, was chosen as the most suitable host for BSMV-VIGS-based functional characterization of Rar1, Sgt1, and Hsp90 in the Mla-mediated resistance toward powdery mildew. BSMV-induced gene silencing of these candidate genes, which are associated in many but not all race-specific pathways, proved t...
Traffic, 2009
Almost nothing is known of the earliest stages of plant virus infections. To address this, we mic... more Almost nothing is known of the earliest stages of plant virus infections. To address this, we microinjected Cy3 (UTP)-labelled tobacco mosaic virus (TMV) into living tobacco trichome cells. The Cy3-virions were infectious, and the viral genome trafficked from cell to cell. However, neither the fluorescent vRNA pool nor the co-injected green fluorescent protein (GFP) left the injected trichome, indicating that the synthesis of (unlabelled) progeny viral (v)RNA is required to initiate cell-to-cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3-vRNA formed granules that became anchored to the motile cortical actin/endoplasmic reticulum (ER) network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actindependent RNA movement. The 5 methylguanosine cap was shown to be required for vRNA anchoring to the actin/ER. TMV vRNA lacking the 5 cap failed to form granules and was degraded in the cytoplasm. Removal of the 3 untranslated region or replicase both inhibited replication but did not prevent granule formation and movement. Dual-labelled TMV virions in which the vRNA and the coat protein were highlighted with different fluorophores showed that both fluorescent signals were initially located on the same ER-bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome.
The Plant Journal, 1999
A novel myb oncogene homologue (AtMYB30) has been isolated by differential screening of a cDNA li... more A novel myb oncogene homologue (AtMYB30) has been isolated by differential screening of a cDNA library prepared from Xanthomonas campestris pv. campestris (X. campestris)-inoculated Arabidopsis thaliana cells cultured in the presence of cycloheximide. AtMYB30 is a single-copy gene, and the encoded protein contains a MYB domain highly homologous to other plant and animal MYB proteins. Analyses of transcript levels in A. thaliana plants, or in cultured A. thaliana cells infected with either virulent or avirulent strains of the pathogens X. campestris and Pseudomonas syringae pv. tomato, showed that maximal levels of transcription of this gene occurred during the hypersensitive response. Furthermore, in A. thaliana mutants affected in the control of cell death initiation (lsd3, lsd4 and lsd5), constitutive expression or expression in lesion-positive plants was observed, while in suppressors of the mutations lsd5 and lsd4, AtMYB30 transcripts did not accumulate. However, AtMYB30 expression could not be detected in the lsd1 mutant, which was hyperresponsive to cell death initiators and unable to limit the extent of cell death, whatever the environmental conditions. The results presented here suggest a strong correlation between AtMYB30 and genetically controlled cell death, with a role in the initiation of cell death rather than in the limitation of its extent. Our results further indicate that the lsd mutants constitute an appropriate genetic model for studying the role of this gene in hypersensitive cell death, and their relation to different steps of the pathway(s) leading to cell death.
The Plant Journal, 2009
We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protei... more We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protein, coupled to bimolecular fluorescence complementation (BiFC). Two Pumilio homology domain (PUMHD) polypeptides, fused to either the N-or C-terminal halves of split mCitrine, were engineered to recognize two closely adjacent eight-nucleotide sequences in the genomic RNA of tobacco mosaic virus (TMV). Binding of the PUMHDs to their target sites brought the split mCitrine halves into close proximity, allowing BiFC to occur and revealing the localization of viral RNA within infected cells. The bulk of the RNA was sequestered in characteristic inclusion bodies known as viral replication complexes (VRCs), with a second population of RNA localized in discrete particles distributed throughout the peripheral cytoplasm. Transfer of the TMV Pumilio recognition sequences into the genome of potato virus X (PVX) allowed the PVX RNA to be localized. Unlike TMV, the PVX RNA was concentrated in distinctive 'whorls' within the VRC. Optical sectioning of the PVX VRCs revealed that one of the viral movement proteins was localized to the centres of the RNA whorls, demonstrating significant partitioning of viral RNA and proteins within the VRC. The utility of Pumilio as a fluorescence-based reporter for viral RNA is discussed.
The Plant Journal, 2007
A diverse range of plant proteases are implicated in pathogen perception and in subsequent signal... more A diverse range of plant proteases are implicated in pathogen perception and in subsequent signalling and execution of disease resistance. We demonstrate, using protease inhibitors and virus-induced gene silencing (VIGS), that the plant papain cysteine protease cathepsin B is required for the disease resistance hypersensitive response (HR). VIGS of cathepsin B prevented programmed cell death (PCD) and compromised disease resistance induced by two distinct non-host bacterial pathogens. It also suppressed the HR triggered by transient co-expression of potato R3a and Phytophthora infestans Avr3a genes. However, VIGS of cathepsin B did not compromise HR following recognition of Cladosporium fulvum AVR4 by tomato Cf-4, indicating that plant PCD can be independent of cathepsin B. The non-host HR to Erwinia amylovora was accompanied by a transient increase in cathepsin B transcript level and enzymatic activity and induction of the HR marker gene Hsr203. VIGS of cathepsin B significantly reduced the induction of Hsr203 following E. amylovora challenge, further demonstrating a role for this protease in PCD. Whereas cathepsin B is often relocalized from the lysosome to the cytosol during animal PCD, plant cathepsin B is secreted into the apoplast, and is activated upon secretion in the absence of pathogen challenge.
The Plant Cell, 2010
Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause d... more Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for hostinduced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens.
Plant, Cell & Environment, 2007
'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) ... more 'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) in potato tuber carbohydrate metabolism at low temperature (4°C). To this end, RNA interference (RNAi) was used to reduce SPP expression in transgenic potato tubers. Analysis of SPP specific small interfering RNAs (siRNAs), SPP protein accumulation and enzyme activity indicated that SPP silencing in transgenic tubers was stable during the cold treatment. Analysis of soluble carbohydrates showed that in transgenic tubers, cold-induced hexogenesis was inhibited while, despite strongly reduced SPP activity, sucrose levels exceeded wild-type (WT) values four-to fivefold after 34 d of cold treatment. This led to a drastic change in the hexose-to-sucrose ratio from 1.9 in WT tubers to 0.15 to 0.11 in transgenic tubers, while the total amount of soluble sugars was largely unchanged in both genotypes. Sucrose-6 F -phosphate (Suc6P), the substrate of SPP, accumulated in transgenic tubers in the cold which most likely enables the residual enzyme to operate with maximal catalytic activity in vivo and thus, in the long term, counterbalances reduced SPP activity in the transformants. Northern analysis revealed that cold-induced expression of vacuolar invertase (VI) was blocked in SPP-silenced tubers explaining a reduced sucrose-to-hexose conversion. Suc6P levels were found to negatively correlate with VI expression. A possible role of Suc6P in regulating VI expression is discussed.
PLANT PHYSIOLOGY, 2012
Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for mo... more Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.
PLANT PHYSIOLOGY, 2009
The quality control of mRNA maturation is a highly regulated process that surveys pre-mRNA integr... more The quality control of mRNA maturation is a highly regulated process that surveys pre-mRNA integrity and eliminates improperly matured pre-mRNAs. In nature, certain viruses regulate the expression of their genes by hijacking the endogenous RNA quality control machinery. We demonstrate that the inclusion of 5# splice sites within the 3#-untranslated region of a reporter gene in plants alters the pre-mRNA cleavage and polyadenylation process, resulting in pre-mRNA degradation, exemplifying a regulatory mechanism conserved between kingdoms. Altered pre-mRNA processing was associated with an inhibition of homologous gene expression in trans and the preferential accumulation of 24-nucleotide (nt) short-interfering RNAs (siRNAs) as opposed to 21-nt siRNA subspecies, suggesting that degradation of the aberrant pre-mRNA involves the silencing machinery. However, gene expression was not restored by coexpression of a silencing suppressor or in an RNAdependent RNA polymerase (RDR6)-deficient background despite reduced 24-nt siRNA accumulation. Our data highlight a complex cross talk between the quality control RNA machinery, 3#-end pre-mRNA maturation, and RNA-silencing pathways capable of discriminating among different types of aberrant RNAs.
PLANT PHYSIOLOGY, 2005
We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for t... more We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and systemic movement without causing excessive symptoms. Phytoene desaturase silencing leading to photobleaching was used as a phenotypic marker alongside reverse transcription-PCR data to characterize the silencing response at the molecular level. Barley cultivar Clansman, harboring the Mla13 resistance gene, was chosen as the most suitable host for BSMV-VIGS-based functional characterization of Rar1, Sgt1, and Hsp90 in the Mla-mediated resistance toward powdery mildew. BSMV-induced gene silencing of these candidate genes, which are associated in many but not all race-specific pathways, proved to be robust and could be detected at both mRNA and protein levels for up to 21 d postinoculation. Systemic silencing was observed not only in the newly developed leaves from the main stem but also in axillary shoots. By examining fungal development from an incompatible mildew strain carrying the cognate Avr13 gene on plants BSMV silenced for Rar1, Sgt1, and Hsp90, a resistance-breaking phenotype was observed, while plants infected with BSMV control constructs remained resistant. We demonstrate that Hsp90 is a required component for Mla13-mediated race-specific resistance and that BSMV-induced VIGS is a powerful tool to characterize genes involved in pathogen resistance in barley.
Molecular Plant-Microbe Interactions, 2010
BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions... more BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.
MGG Molecular & General Genetics, 1995
A family of genes, the so-called msr genes (multiple stimulus response), has recently been identi... more A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5' flanking DNA sequence from the str246C gene fused to the beta-glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5' deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 bp was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.
Journal of Virology, 2005
RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA inter... more RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA interference in animals and posttranscriptional gene silencing (PTGS) in plants. In plants, PTGS acts as an antiviral system; a successful virus infection requires suppression or evasion of the induced silencing response. Small interfering RNAs (siRNAs) accumulate in plants infected with positive-strand RNA viruses and provide specificity to this RNA-mediated defense. We present here the results of a survey of virus-specific siRNAs characterized by a sequence analysis of siRNAs from plants infected with Cymbidium ringspot tombusvirus (CymRSV). CymRSV siRNA sequences have a nonrandom distribution along the length of the viral genome, suggesting that there are hot spots for virus-derived siRNA generation. CymRSV siRNAs bound to the CymRSV p19 suppressor protein have the same asymmetry in strand polarity as the sequenced siRNAs and are imperfect double-stranded RNA duplexes. Moreover, an analysis of siRNAs derived from two other nonrelated positive-strand RNA viruses showed that they displayed the same asymmetry as CymRSV siRNAs. Finally, we show that Tobacco mosaic virus (TMV) carrying a short inverted repeat of the phytoene desaturase (PDS) gene triggered more accumulation of PDS siRNAs than the corresponding antisense PDS sequence. Taken together, these results suggest that virus-derived siRNAs originate predominantly by direct DICER cleavage of imperfect duplexes in the most folded regions of the positive strand of the viral RNA.
Journal of General Virology, 2006
Replication of Barley stripe mosaic virus (BSMV), genus Hordeivirus, is thought to be associated ... more Replication of Barley stripe mosaic virus (BSMV), genus Hordeivirus, is thought to be associated with vesicles in proplastids and chloroplasts, but the molecular details of the process and identity of virus proteins involved in establishing the virus replication complexes are unknown. In addition, BSMV encodes a triple-gene block of movement proteins (TGBs) that putatively share functional roles with their counterparts in other hordei-, pomo-and pecluviruses, but detailed information on the intracellular locations of the individual TGBs is lacking. Here, the subcellular localizations of BSMV-encoded proteins TGB2 and cb fused to green or red fluorescent proteins were examined in epidermal cells of Nicotiana benthamiana and barley (Hordeum vulgare 'Black Hulless'). The fusion proteins were expressed from a BSMV vector or under the control of the cauliflower mosaic virus 35S promoter. The subcellular localizations were studied by confocal laser-scanning microscopy (CLSM). CLSM studies showed that both proteins were recruited to chloroplasts in the presence of viral RNA and that virus RNA, coat protein and cb protein were detected in plastid preparations from infected leaves. Electron microscope images of thin sections of virus-infected leaves revealed abnormal chloroplasts with cytoplasmic inclusions containing virus-like particles. In addition, cellular localizations of BSMV TGB2 suggest subtle differences in function between the hordei-like TGB2 proteins. The results indicate that TGB2 and cb proteins play a previously unknown functional role at the site of virus replication.
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2008
Almost nothing is known of the early stages of TMV infection. To address this, we directly labell... more Almost nothing is known of the early stages of TMV infection. To address this, we directly labelled the viral RNA of TMV by incorporation of UTP-Cy3 and injected it onto the cytoplasm of living tobacco trichome cells. The Cy3-labelled virions were infectious and the viral genome trafficked from cell-to-cell. However, neither labelled vRNA nor coinjected GFP were able to pass out of the initial injected trichome, indicating that virus movement out of trichomes is not accompanied by passive plasmodesmatal gating. Both Cy3-virions and uncoated Cy3-vRNA formed granules that became anchored to the motile cortical ER/ actin network of the trichome cell within minutes of injection. Movement of vRNA granules on the actin/ER was arrested by inhibitors of the actin cytoskeleton (cytochalasin). TMV capping was shown to be required for vRNA anchoring to the ER. Virions, or vRNA, lacking the 5′ cap failed to form RNA transport granules and were degraded in the host-cell cytoplasm. Deleting the 3′ prime UTR region from TMV virions did not affect the initial formation or anchoring of vRNA granules. We subsequently generated dual-labelled infectious TMV virions in which the vRNA was labelled with Cy3 (red) and the capsid protein was labelled with Cy2 (green). Following injection, both red and green signals were located on the same ER-bound granules, with a subsequent loss of the green signal only, indicating that in natural infections TMV virions are anchored to the ER prior to uncoating of the viral genome.
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2009
Available online xxxx 14 15 16 17 Keywords: 18 RNA-directed RNA polymerase 19 RNA interference 20... more Available online xxxx 14 15 16 17 Keywords: 18 RNA-directed RNA polymerase 19 RNA interference 20 Defence gene induction 21 Salicylic acid 22 Barley 23 RNA-directed RNA polymerases (RDRs) play crucial roles in the RNA silencing response of plants by 24 enhancing and maintaining silencing signals. At least two members of the RDR group, namely RDR1 and 25 RDR6, are implicated in defence against plant viruses. RDRs have so far only been characterized in dicot 26 species. In this report, we identified and characterized HvRDR1, HvRDR2 and HvRDR6 genes in the monocot 27 plant barley (Hordeum vulgare). We analysed their expression under various biotic and abiotic stresses 28 including fungal and viral infections, salicylic acid treatment as well as during plant development. The 29 different classes and subclasses of barley RDRs displayed contrasting expression patterns during pathogen 30
Plant physiology, 2005
We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for t... more We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and systemic movement without causing excessive symptoms. Phytoene desaturase silencing leading to photobleaching was used as a phenotypic marker alongside reverse transcription-PCR data to characterize the silencing response at the molecular level. Barley cultivar Clansman, harboring the Mla13 resistance gene, was chosen as the most suitable host for BSMV-VIGS-based functional characterization of Rar1, Sgt1, and Hsp90 in the Mla-mediated resistance toward powdery mildew. BSMV-induced gene silencing of these candidate genes, which are associated in many but not all race-specific pathways, proved t...
Traffic, 2009
Almost nothing is known of the earliest stages of plant virus infections. To address this, we mic... more Almost nothing is known of the earliest stages of plant virus infections. To address this, we microinjected Cy3 (UTP)-labelled tobacco mosaic virus (TMV) into living tobacco trichome cells. The Cy3-virions were infectious, and the viral genome trafficked from cell to cell. However, neither the fluorescent vRNA pool nor the co-injected green fluorescent protein (GFP) left the injected trichome, indicating that the synthesis of (unlabelled) progeny viral (v)RNA is required to initiate cell-to-cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3-vRNA formed granules that became anchored to the motile cortical actin/endoplasmic reticulum (ER) network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actindependent RNA movement. The 5 methylguanosine cap was shown to be required for vRNA anchoring to the actin/ER. TMV vRNA lacking the 5 cap failed to form granules and was degraded in the cytoplasm. Removal of the 3 untranslated region or replicase both inhibited replication but did not prevent granule formation and movement. Dual-labelled TMV virions in which the vRNA and the coat protein were highlighted with different fluorophores showed that both fluorescent signals were initially located on the same ER-bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome.
The Plant Journal, 1999
A novel myb oncogene homologue (AtMYB30) has been isolated by differential screening of a cDNA li... more A novel myb oncogene homologue (AtMYB30) has been isolated by differential screening of a cDNA library prepared from Xanthomonas campestris pv. campestris (X. campestris)-inoculated Arabidopsis thaliana cells cultured in the presence of cycloheximide. AtMYB30 is a single-copy gene, and the encoded protein contains a MYB domain highly homologous to other plant and animal MYB proteins. Analyses of transcript levels in A. thaliana plants, or in cultured A. thaliana cells infected with either virulent or avirulent strains of the pathogens X. campestris and Pseudomonas syringae pv. tomato, showed that maximal levels of transcription of this gene occurred during the hypersensitive response. Furthermore, in A. thaliana mutants affected in the control of cell death initiation (lsd3, lsd4 and lsd5), constitutive expression or expression in lesion-positive plants was observed, while in suppressors of the mutations lsd5 and lsd4, AtMYB30 transcripts did not accumulate. However, AtMYB30 expression could not be detected in the lsd1 mutant, which was hyperresponsive to cell death initiators and unable to limit the extent of cell death, whatever the environmental conditions. The results presented here suggest a strong correlation between AtMYB30 and genetically controlled cell death, with a role in the initiation of cell death rather than in the limitation of its extent. Our results further indicate that the lsd mutants constitute an appropriate genetic model for studying the role of this gene in hypersensitive cell death, and their relation to different steps of the pathway(s) leading to cell death.
The Plant Journal, 2009
We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protei... more We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protein, coupled to bimolecular fluorescence complementation (BiFC). Two Pumilio homology domain (PUMHD) polypeptides, fused to either the N-or C-terminal halves of split mCitrine, were engineered to recognize two closely adjacent eight-nucleotide sequences in the genomic RNA of tobacco mosaic virus (TMV). Binding of the PUMHDs to their target sites brought the split mCitrine halves into close proximity, allowing BiFC to occur and revealing the localization of viral RNA within infected cells. The bulk of the RNA was sequestered in characteristic inclusion bodies known as viral replication complexes (VRCs), with a second population of RNA localized in discrete particles distributed throughout the peripheral cytoplasm. Transfer of the TMV Pumilio recognition sequences into the genome of potato virus X (PVX) allowed the PVX RNA to be localized. Unlike TMV, the PVX RNA was concentrated in distinctive 'whorls' within the VRC. Optical sectioning of the PVX VRCs revealed that one of the viral movement proteins was localized to the centres of the RNA whorls, demonstrating significant partitioning of viral RNA and proteins within the VRC. The utility of Pumilio as a fluorescence-based reporter for viral RNA is discussed.
The Plant Journal, 2007
A diverse range of plant proteases are implicated in pathogen perception and in subsequent signal... more A diverse range of plant proteases are implicated in pathogen perception and in subsequent signalling and execution of disease resistance. We demonstrate, using protease inhibitors and virus-induced gene silencing (VIGS), that the plant papain cysteine protease cathepsin B is required for the disease resistance hypersensitive response (HR). VIGS of cathepsin B prevented programmed cell death (PCD) and compromised disease resistance induced by two distinct non-host bacterial pathogens. It also suppressed the HR triggered by transient co-expression of potato R3a and Phytophthora infestans Avr3a genes. However, VIGS of cathepsin B did not compromise HR following recognition of Cladosporium fulvum AVR4 by tomato Cf-4, indicating that plant PCD can be independent of cathepsin B. The non-host HR to Erwinia amylovora was accompanied by a transient increase in cathepsin B transcript level and enzymatic activity and induction of the HR marker gene Hsr203. VIGS of cathepsin B significantly reduced the induction of Hsr203 following E. amylovora challenge, further demonstrating a role for this protease in PCD. Whereas cathepsin B is often relocalized from the lysosome to the cytosol during animal PCD, plant cathepsin B is secreted into the apoplast, and is activated upon secretion in the absence of pathogen challenge.
The Plant Cell, 2010
Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause d... more Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for hostinduced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens.
Plant, Cell & Environment, 2007
'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) ... more 'cold sweetening'. The aim of this work was to investigate the role of sucrose-phosphatase (SPP) in potato tuber carbohydrate metabolism at low temperature (4°C). To this end, RNA interference (RNAi) was used to reduce SPP expression in transgenic potato tubers. Analysis of SPP specific small interfering RNAs (siRNAs), SPP protein accumulation and enzyme activity indicated that SPP silencing in transgenic tubers was stable during the cold treatment. Analysis of soluble carbohydrates showed that in transgenic tubers, cold-induced hexogenesis was inhibited while, despite strongly reduced SPP activity, sucrose levels exceeded wild-type (WT) values four-to fivefold after 34 d of cold treatment. This led to a drastic change in the hexose-to-sucrose ratio from 1.9 in WT tubers to 0.15 to 0.11 in transgenic tubers, while the total amount of soluble sugars was largely unchanged in both genotypes. Sucrose-6 F -phosphate (Suc6P), the substrate of SPP, accumulated in transgenic tubers in the cold which most likely enables the residual enzyme to operate with maximal catalytic activity in vivo and thus, in the long term, counterbalances reduced SPP activity in the transformants. Northern analysis revealed that cold-induced expression of vacuolar invertase (VI) was blocked in SPP-silenced tubers explaining a reduced sucrose-to-hexose conversion. Suc6P levels were found to negatively correlate with VI expression. A possible role of Suc6P in regulating VI expression is discussed.
PLANT PHYSIOLOGY, 2012
Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for mo... more Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.
PLANT PHYSIOLOGY, 2009
The quality control of mRNA maturation is a highly regulated process that surveys pre-mRNA integr... more The quality control of mRNA maturation is a highly regulated process that surveys pre-mRNA integrity and eliminates improperly matured pre-mRNAs. In nature, certain viruses regulate the expression of their genes by hijacking the endogenous RNA quality control machinery. We demonstrate that the inclusion of 5# splice sites within the 3#-untranslated region of a reporter gene in plants alters the pre-mRNA cleavage and polyadenylation process, resulting in pre-mRNA degradation, exemplifying a regulatory mechanism conserved between kingdoms. Altered pre-mRNA processing was associated with an inhibition of homologous gene expression in trans and the preferential accumulation of 24-nucleotide (nt) short-interfering RNAs (siRNAs) as opposed to 21-nt siRNA subspecies, suggesting that degradation of the aberrant pre-mRNA involves the silencing machinery. However, gene expression was not restored by coexpression of a silencing suppressor or in an RNAdependent RNA polymerase (RDR6)-deficient background despite reduced 24-nt siRNA accumulation. Our data highlight a complex cross talk between the quality control RNA machinery, 3#-end pre-mRNA maturation, and RNA-silencing pathways capable of discriminating among different types of aberrant RNAs.
PLANT PHYSIOLOGY, 2005
We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for t... more We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and systemic movement without causing excessive symptoms. Phytoene desaturase silencing leading to photobleaching was used as a phenotypic marker alongside reverse transcription-PCR data to characterize the silencing response at the molecular level. Barley cultivar Clansman, harboring the Mla13 resistance gene, was chosen as the most suitable host for BSMV-VIGS-based functional characterization of Rar1, Sgt1, and Hsp90 in the Mla-mediated resistance toward powdery mildew. BSMV-induced gene silencing of these candidate genes, which are associated in many but not all race-specific pathways, proved to be robust and could be detected at both mRNA and protein levels for up to 21 d postinoculation. Systemic silencing was observed not only in the newly developed leaves from the main stem but also in axillary shoots. By examining fungal development from an incompatible mildew strain carrying the cognate Avr13 gene on plants BSMV silenced for Rar1, Sgt1, and Hsp90, a resistance-breaking phenotype was observed, while plants infected with BSMV control constructs remained resistant. We demonstrate that Hsp90 is a required component for Mla13-mediated race-specific resistance and that BSMV-induced VIGS is a powerful tool to characterize genes involved in pathogen resistance in barley.
Molecular Plant-Microbe Interactions, 2010
BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions... more BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.
MGG Molecular & General Genetics, 1995
A family of genes, the so-called msr genes (multiple stimulus response), has recently been identi... more A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5' flanking DNA sequence from the str246C gene fused to the beta-glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5' deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 bp was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.
Journal of Virology, 2005
RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA inter... more RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA interference in animals and posttranscriptional gene silencing (PTGS) in plants. In plants, PTGS acts as an antiviral system; a successful virus infection requires suppression or evasion of the induced silencing response. Small interfering RNAs (siRNAs) accumulate in plants infected with positive-strand RNA viruses and provide specificity to this RNA-mediated defense. We present here the results of a survey of virus-specific siRNAs characterized by a sequence analysis of siRNAs from plants infected with Cymbidium ringspot tombusvirus (CymRSV). CymRSV siRNA sequences have a nonrandom distribution along the length of the viral genome, suggesting that there are hot spots for virus-derived siRNA generation. CymRSV siRNAs bound to the CymRSV p19 suppressor protein have the same asymmetry in strand polarity as the sequenced siRNAs and are imperfect double-stranded RNA duplexes. Moreover, an analysis of siRNAs derived from two other nonrelated positive-strand RNA viruses showed that they displayed the same asymmetry as CymRSV siRNAs. Finally, we show that Tobacco mosaic virus (TMV) carrying a short inverted repeat of the phytoene desaturase (PDS) gene triggered more accumulation of PDS siRNAs than the corresponding antisense PDS sequence. Taken together, these results suggest that virus-derived siRNAs originate predominantly by direct DICER cleavage of imperfect duplexes in the most folded regions of the positive strand of the viral RNA.
Journal of General Virology, 2006
Replication of Barley stripe mosaic virus (BSMV), genus Hordeivirus, is thought to be associated ... more Replication of Barley stripe mosaic virus (BSMV), genus Hordeivirus, is thought to be associated with vesicles in proplastids and chloroplasts, but the molecular details of the process and identity of virus proteins involved in establishing the virus replication complexes are unknown. In addition, BSMV encodes a triple-gene block of movement proteins (TGBs) that putatively share functional roles with their counterparts in other hordei-, pomo-and pecluviruses, but detailed information on the intracellular locations of the individual TGBs is lacking. Here, the subcellular localizations of BSMV-encoded proteins TGB2 and cb fused to green or red fluorescent proteins were examined in epidermal cells of Nicotiana benthamiana and barley (Hordeum vulgare 'Black Hulless'). The fusion proteins were expressed from a BSMV vector or under the control of the cauliflower mosaic virus 35S promoter. The subcellular localizations were studied by confocal laser-scanning microscopy (CLSM). CLSM studies showed that both proteins were recruited to chloroplasts in the presence of viral RNA and that virus RNA, coat protein and cb protein were detected in plastid preparations from infected leaves. Electron microscope images of thin sections of virus-infected leaves revealed abnormal chloroplasts with cytoplasmic inclusions containing virus-like particles. In addition, cellular localizations of BSMV TGB2 suggest subtle differences in function between the hordei-like TGB2 proteins. The results indicate that TGB2 and cb proteins play a previously unknown functional role at the site of virus replication.
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2008
Almost nothing is known of the early stages of TMV infection. To address this, we directly labell... more Almost nothing is known of the early stages of TMV infection. To address this, we directly labelled the viral RNA of TMV by incorporation of UTP-Cy3 and injected it onto the cytoplasm of living tobacco trichome cells. The Cy3-labelled virions were infectious and the viral genome trafficked from cell-to-cell. However, neither labelled vRNA nor coinjected GFP were able to pass out of the initial injected trichome, indicating that virus movement out of trichomes is not accompanied by passive plasmodesmatal gating. Both Cy3-virions and uncoated Cy3-vRNA formed granules that became anchored to the motile cortical ER/ actin network of the trichome cell within minutes of injection. Movement of vRNA granules on the actin/ER was arrested by inhibitors of the actin cytoskeleton (cytochalasin). TMV capping was shown to be required for vRNA anchoring to the ER. Virions, or vRNA, lacking the 5′ cap failed to form RNA transport granules and were degraded in the host-cell cytoplasm. Deleting the 3′ prime UTR region from TMV virions did not affect the initial formation or anchoring of vRNA granules. We subsequently generated dual-labelled infectious TMV virions in which the vRNA was labelled with Cy3 (red) and the capsid protein was labelled with Cy2 (green). Following injection, both red and green signals were located on the same ER-bound granules, with a subsequent loss of the green signal only, indicating that in natural infections TMV virions are anchored to the ER prior to uncoating of the viral genome.
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2009
Available online xxxx 14 15 16 17 Keywords: 18 RNA-directed RNA polymerase 19 RNA interference 20... more Available online xxxx 14 15 16 17 Keywords: 18 RNA-directed RNA polymerase 19 RNA interference 20 Defence gene induction 21 Salicylic acid 22 Barley 23 RNA-directed RNA polymerases (RDRs) play crucial roles in the RNA silencing response of plants by 24 enhancing and maintaining silencing signals. At least two members of the RDR group, namely RDR1 and 25 RDR6, are implicated in defence against plant viruses. RDRs have so far only been characterized in dicot 26 species. In this report, we identified and characterized HvRDR1, HvRDR2 and HvRDR6 genes in the monocot 27 plant barley (Hordeum vulgare). We analysed their expression under various biotic and abiotic stresses 28 including fungal and viral infections, salicylic acid treatment as well as during plant development. The 29 different classes and subclasses of barley RDRs displayed contrasting expression patterns during pathogen 30