Costantine Xaplanteris - Academia.edu (original) (raw)
Uploads
Papers by Costantine Xaplanteris
Journal of Plasma Physics, 2015
The second half of the 20th century can be characterized and named as the ‘plasma era’, as the pl... more The second half of the 20th century can be characterized and named as the ‘plasma era’, as the plasma gathered scientific interest because of its special physical behaviour. Thus, it was considered as the fourth material state and the plasma physics began to form consequently. In addition to this, many important applications of plasma were discovered and put to use. Especially, in last few decades, there has been an increased interest in the use of cold atmospheric plasma in bio-chemical applications. Until now, thermal plasma has been commonly used in many bio-medical and other applications; however, more recent efforts have shown that plasma can also be produced at lower temperature (close to the environment temperature) by using ambient air in an open space (in atmospheric pressure). However, two aspects remain neglected: firstly, low-temperature plasma production with a large area, and secondly, acquiring the necessary knowledge and understanding the relevant interaction mechani...
Chaotic Systems, 2010
In Plasma Physics laboratory of NCSR "Demokritos" the plasma chemistry method has been used for t... more In Plasma Physics laboratory of NCSR "Demokritos" the plasma chemistry method has been used for the restoration and conservation of metallic archaeological objects during the last decades. The obtained experience had led us to conclude that plasma parameters and different status of treated objects are so specific, so as to become unique. In the present paper the theoretical and experimental results of our laboratory are summarized. A treatment table of plasma parameters is given, which claims to be useful for the conservators. It is obvious that this treatment table needs to be completed and extended, so that it meets the uniqueness of each artifact. A theoretical study and the treatment of a variety of iron objects are presented.
Journal of Plasma Physics, 2015
ABSTRACT The second half of the 20th century can be characterized and named as the ‘plasma era’, ... more ABSTRACT The second half of the 20th century can be characterized and named as the ‘plasma era’, as the plasma gathered scientific interest because of its special physical behaviour. Thus, it was considered as the fourth material state and the plasma physics began to form consequently. In addition to this, many important applications of plasma were discovered and put to use. Especially, in last few decades, there has been an increased interest in the use of cold atmospheric plasma in bio-chemical applications. Until now, thermal plasma has been commonly used in many bio-medical and other applications; however, more recent efforts have shown that plasma can also be produced at lower temperature (close to the environment temperature) by using ambient air in an open space (in atmospheric pressure). However, two aspects remain neglected: firstly, low-temperature plasma production with a large area, and secondly, acquiring the necessary knowledge and understanding the relevant interaction mechanisms of plasma species with microorganisms. These aspects are currently being investigated at the ‘Demokritos’ Plasma Laboratory in Athens, Greece with radio frequency (27.12 MHz and it integer harmonics)-driven sub-atmospheric pressure plasma (100 Pa). The first aspect was achieved with atmospheric plasma being produced at a low temperature (close to the environment temperature) and in a large closed space systems. Regarding the plasma effect on living microorganisms, preliminary experiments and findings have already been carried out and many more have been planned for the near future.
The second half of the 20th century can be characterized and named as the 'plasma era', as the pl... more The second half of the 20th century can be characterized and named as the 'plasma era', as the plasma gathered scientific interest because of its special physical behaviour. Thus, it was considered as the fourth material state and the plasma physics began to form consequently. In addition to this, many important applications of plasma were discovered and put to use. Especially, in last few decades, there has been an increased interest in the use of cold atmospheric plasma in biochemical applications. Until now, thermal plasma has been commonly used in many bio-medical and other applications; however, more recent efforts have shown that plasma can also be produced at lower temperature (close to the environment temperature) by using ambient air in an open space (in atmospheric pressure). However, two aspects remain neglected: firstly, low-temperature plasma production with a large area, and secondly, acquiring the necessary knowledge and understanding the relevant interaction mechanisms of plasma species with microorganisms. These aspects are currently being investigated at the 'Demokritos' Plasma Laboratory in Athens, Greece with radio frequency (27.12 MHz and it integer harmonics)-driven sub-atmospheric pressure plasma (100 Pa). The first aspect was achieved with atmospheric plasma being produced at a low temperature (close to the environment temperature) and in a large closed space systems. Regarding the plasma effect on living microorganisms, preliminary experiments and findings have already been carried out and many more have been planned for the near future.
Journal of Plasma Physics, 2015
The second half of the 20th century can be characterized and named as the ‘plasma era’, as the pl... more The second half of the 20th century can be characterized and named as the ‘plasma era’, as the plasma gathered scientific interest because of its special physical behaviour. Thus, it was considered as the fourth material state and the plasma physics began to form consequently. In addition to this, many important applications of plasma were discovered and put to use. Especially, in last few decades, there has been an increased interest in the use of cold atmospheric plasma in bio-chemical applications. Until now, thermal plasma has been commonly used in many bio-medical and other applications; however, more recent efforts have shown that plasma can also be produced at lower temperature (close to the environment temperature) by using ambient air in an open space (in atmospheric pressure). However, two aspects remain neglected: firstly, low-temperature plasma production with a large area, and secondly, acquiring the necessary knowledge and understanding the relevant interaction mechani...
Chaotic Systems, 2010
In Plasma Physics laboratory of NCSR "Demokritos" the plasma chemistry method has been used for t... more In Plasma Physics laboratory of NCSR "Demokritos" the plasma chemistry method has been used for the restoration and conservation of metallic archaeological objects during the last decades. The obtained experience had led us to conclude that plasma parameters and different status of treated objects are so specific, so as to become unique. In the present paper the theoretical and experimental results of our laboratory are summarized. A treatment table of plasma parameters is given, which claims to be useful for the conservators. It is obvious that this treatment table needs to be completed and extended, so that it meets the uniqueness of each artifact. A theoretical study and the treatment of a variety of iron objects are presented.
Journal of Plasma Physics, 2015
ABSTRACT The second half of the 20th century can be characterized and named as the ‘plasma era’, ... more ABSTRACT The second half of the 20th century can be characterized and named as the ‘plasma era’, as the plasma gathered scientific interest because of its special physical behaviour. Thus, it was considered as the fourth material state and the plasma physics began to form consequently. In addition to this, many important applications of plasma were discovered and put to use. Especially, in last few decades, there has been an increased interest in the use of cold atmospheric plasma in bio-chemical applications. Until now, thermal plasma has been commonly used in many bio-medical and other applications; however, more recent efforts have shown that plasma can also be produced at lower temperature (close to the environment temperature) by using ambient air in an open space (in atmospheric pressure). However, two aspects remain neglected: firstly, low-temperature plasma production with a large area, and secondly, acquiring the necessary knowledge and understanding the relevant interaction mechanisms of plasma species with microorganisms. These aspects are currently being investigated at the ‘Demokritos’ Plasma Laboratory in Athens, Greece with radio frequency (27.12 MHz and it integer harmonics)-driven sub-atmospheric pressure plasma (100 Pa). The first aspect was achieved with atmospheric plasma being produced at a low temperature (close to the environment temperature) and in a large closed space systems. Regarding the plasma effect on living microorganisms, preliminary experiments and findings have already been carried out and many more have been planned for the near future.
The second half of the 20th century can be characterized and named as the 'plasma era', as the pl... more The second half of the 20th century can be characterized and named as the 'plasma era', as the plasma gathered scientific interest because of its special physical behaviour. Thus, it was considered as the fourth material state and the plasma physics began to form consequently. In addition to this, many important applications of plasma were discovered and put to use. Especially, in last few decades, there has been an increased interest in the use of cold atmospheric plasma in biochemical applications. Until now, thermal plasma has been commonly used in many bio-medical and other applications; however, more recent efforts have shown that plasma can also be produced at lower temperature (close to the environment temperature) by using ambient air in an open space (in atmospheric pressure). However, two aspects remain neglected: firstly, low-temperature plasma production with a large area, and secondly, acquiring the necessary knowledge and understanding the relevant interaction mechanisms of plasma species with microorganisms. These aspects are currently being investigated at the 'Demokritos' Plasma Laboratory in Athens, Greece with radio frequency (27.12 MHz and it integer harmonics)-driven sub-atmospheric pressure plasma (100 Pa). The first aspect was achieved with atmospheric plasma being produced at a low temperature (close to the environment temperature) and in a large closed space systems. Regarding the plasma effect on living microorganisms, preliminary experiments and findings have already been carried out and many more have been planned for the near future.