Enrico Costanzo - Academia.edu (original) (raw)

Uploads

Papers by Enrico Costanzo

Research paper thumbnail of Effect of different doses of camelina cake inclusion as a substitute of dietary soybean meal on growth performance and gut health of weaned pigs

British journal of nutrition, Apr 12, 2024

Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet da... more Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet data are still limited. This study aimed to evaluate the effect of different doses of CAM in substitution of soyabean meal on the growth, health and gut health of weaned pigs. At 14 d postweaning (d0), sixty-four piglets were assigned either to a standard diet or to a diet with 4 %, 8 % or 12 % of CAM. Piglets were weighed weekly. At d7 and d28, faeces were collected for microbiota and polyamine and blood for reactive oxygen metabolites (ROM) and thyroxine analysis. At d28, pigs were slaughtered, organs were weighed, pH was recorded on gut, colon was analysed for volatile fatty acids (VFA) and jejunum was used for morphological and gene expression analysis. Data analysis was carried out using a mixed model including diet, pen and litter as factors; linear and quadratic contrasts were tested. CAM linearly reduced the average daily gain from d0-d7, d0-d14, d0-d21 and d0-d28 (P ≤ 0•01). From d0-d7 increasing CAM linearly decreased feed intake (P = 0•04) and increased linearly the feed to gain (P = 0•004). CAM increased linearly the liver weight (P < 0•0001) and affected the cadaverine (P < 0•001). The diet did not affect the ROM, thyroxine, intestinal pH, VFA and morphology. All doses of CAM increased the α diversity indices at d28 (P < 0•05). CAM at 4 % promoted the abundance of Butyricicoccaceae_UCG-008. Feeding with CAM enhanced resilience in the gut microbiome and can be evaluated as a potential alternative protein source with dose-dependent limitations on piglet growth performance.

Research paper thumbnail of Comparing Quality and Functional Properties of Protein Isolates from Soybean Cakes: Effect of De-Oiling Technologies

Research paper thumbnail of Sunflower seed-derived bioactive peptides show antioxidant and anti-inflammatory activity: From in silico simulation to the animal model

Food Chemistry, Apr 30, 2024

Research paper thumbnail of The Anthropocene in Light of Biological Feedback

Research paper thumbnail of The role of WOX genes in flower development

Annals of Botany, Jun 27, 2014

† Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transc... more † Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. † Scope In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. † Conclusions This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development.

Research paper thumbnail of The Genetic Basis of Floral Organ Identity and Its Applications in Ornamental Plant Breeding

Handbook of plant breeding, 2018

Petunia hybrida (or garden petunia) is worldwide one of the most popular bedding plants. At the s... more Petunia hybrida (or garden petunia) is worldwide one of the most popular bedding plants. At the same time, petunia has a decades-long history as a model species for scientific research to study a variety of processes, including floral organ development. Here we explain the genetic basis of floral organ identity in a comprehensible manner and illustrate the potential of floral organ identity mutants for ornamental plant breeding, using petunia as an example. Although the B- and C-floral organ identity functions are well conserved at the molecular level, indicating broad applicability, different species may exhibit significant differences in the degree of redundancy versus subfunctionalization/specialization among duplicated pairs of the homeotic genes. This is a direct consequence of the complex origin of different plant genomes, which were shaped by whole-genome, large and small-scale duplication events, often leading to (partial) genetic redundancy. Since classical genetic screens only can uncover nonredundant functions, this is probably the main reason why the use of floral organ identity mutants as breeding targets has remained unexplored in many ornamentals. We discuss how different breeding strategies may cope with this phenomenon.

Research paper thumbnail of Comparative functional analysis of WOX genes during flower development in Petunia and Arabidopsis

In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to coloniz... more In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to colonize a large variety of ecological niches on our planet. The two species Petunia x hybrida and Arabidopsis thaliana represent two major groups of flowering plants. In this work, we have shown that HOMEOBOX genes from the WOX family (Wuschel homeoboxes) are heavily involved in polar organ development (such as leaves and sepals, petals, and carpels at the flower level). The maw mawb double mutant in Petunia displays string-like petals, with consequent disappearance of the floral tube. Moreover, we found that these two genes genetically interact with genes from a different family (the MADS family) in ovule identity (ovules are the structures from which seeds develop). We have also shown that other genes from the WOX family are involved in development of a different kind of structures in Petunia: the trichomes. Trichomes are involved in different tasks, protecting the plant from pathogens or abiotic stress. Thanks to functional genetics studies, we have shown functional genetic recruitment of these WOX genes among different plant organs and among different species. This PhD thesis provides evidence for the importance of the WOX family in Evo-Devo studies. Eventually, we unravelled genetic networks controlled by MAW and MAWB trough RNA-Seq analysis.

Research paper thumbnail of Lateral development of floral organs: Unraveling the role of MAEWEST and MAEWESTB in Petunia

Research paper thumbnail of Analyse comparative fonctionnelle des gènes WOX impliqués dans le développement de la fleur chez Petunia et Arabidopsis

In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to coloniz... more In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to colonize a large variety of ecological niches on our planet. The two species Petunia x hybrida and Arabidopsis thaliana represent two major groups of flowering plants. In this work, we have shown that HOMEOBOX genes from the WOX family (Wuschel homeoboxes) are heavily involved in polar organ development (such as leaves and sepals, petals, and carpels at the flower level). The maw mawb double mutant in Petunia displays string-like petals, with consequent disappearance of the floral tube. Moreover, we found that these two genes genetically interact with genes from a different family (the MADS family) in ovule identity (ovules are the structures from which seeds develop). We have also shown that other genes from the WOX family are involved in development of a different kind of structures in Petunia: the trichomes. Trichomes are involved in different tasks, protecting the plant from pathogens or ab...

Research paper thumbnail of The role of WOX genes in flower development

Annals of Botany, 2014

† Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transc... more † Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. † Scope In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. † Conclusions This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development.

Research paper thumbnail of Comparative functional analysis of WOX genes during flower development in Petunia and Arabidopsis

In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to coloniz... more In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to colonize a large variety of ecological niches on our planet. The two species Petunia x hybrida and Arabidopsis thaliana represent two major groups of flowering plants. In this work, we have shown that HOMEOBOX genes from the WOX family (Wuschel homeoboxes) are heavily involved in polar organ development (such as leaves and sepals, petals, and carpels at the flower level). The maw mawb double mutant in Petunia displays string-like petals, with consequent disappearance of the floral tube. Moreover, we found that these two genes genetically interact with genes from a different family (the MADS family) in ovule identity (ovules are the structures from which seeds develop). We have also shown that other genes from the WOX family are involved in development of a different kind of structures in Petunia: the trichomes. Trichomes are involved in different tasks, protecting the plant from pathogens or ab...

Research paper thumbnail of The Genetic Basis of Floral Organ Identity and Its Applications in Ornamental Plant Breeding

Petunia hybrida (or garden petunia) is worldwide one of the most popular bedding plants. At the s... more Petunia hybrida (or garden petunia) is worldwide one of the most popular bedding plants. At the same time, petunia has a decades-long history as a model species for scientific research to study a variety of processes, including floral organ development. Here we explain the genetic basis of floral organ identity in a comprehensible manner and illustrate the potential of floral organ identity mutants for ornamental plant breeding, using petunia as an example. Although the B- and C-floral organ identity functions are well conserved at the molecular level, indicating broad applicability, different species may exhibit significant differences in the degree of redundancy versus subfunctionalization/specialization among duplicated pairs of the homeotic genes. This is a direct consequence of the complex origin of different plant genomes, which were shaped by whole-genome, large and small-scale duplication events, often leading to (partial) genetic redundancy. Since classical genetic screens ...

Research paper thumbnail of Effect of different doses of camelina cake inclusion as a substitute of dietary soybean meal on growth performance and gut health of weaned pigs

British journal of nutrition, Apr 12, 2024

Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet da... more Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet data are still limited. This study aimed to evaluate the effect of different doses of CAM in substitution of soyabean meal on the growth, health and gut health of weaned pigs. At 14 d postweaning (d0), sixty-four piglets were assigned either to a standard diet or to a diet with 4 %, 8 % or 12 % of CAM. Piglets were weighed weekly. At d7 and d28, faeces were collected for microbiota and polyamine and blood for reactive oxygen metabolites (ROM) and thyroxine analysis. At d28, pigs were slaughtered, organs were weighed, pH was recorded on gut, colon was analysed for volatile fatty acids (VFA) and jejunum was used for morphological and gene expression analysis. Data analysis was carried out using a mixed model including diet, pen and litter as factors; linear and quadratic contrasts were tested. CAM linearly reduced the average daily gain from d0-d7, d0-d14, d0-d21 and d0-d28 (P ≤ 0•01). From d0-d7 increasing CAM linearly decreased feed intake (P = 0•04) and increased linearly the feed to gain (P = 0•004). CAM increased linearly the liver weight (P < 0•0001) and affected the cadaverine (P < 0•001). The diet did not affect the ROM, thyroxine, intestinal pH, VFA and morphology. All doses of CAM increased the α diversity indices at d28 (P < 0•05). CAM at 4 % promoted the abundance of Butyricicoccaceae_UCG-008. Feeding with CAM enhanced resilience in the gut microbiome and can be evaluated as a potential alternative protein source with dose-dependent limitations on piglet growth performance.

Research paper thumbnail of Comparing Quality and Functional Properties of Protein Isolates from Soybean Cakes: Effect of De-Oiling Technologies

Research paper thumbnail of Sunflower seed-derived bioactive peptides show antioxidant and anti-inflammatory activity: From in silico simulation to the animal model

Food Chemistry, Apr 30, 2024

Research paper thumbnail of The Anthropocene in Light of Biological Feedback

Research paper thumbnail of The role of WOX genes in flower development

Annals of Botany, Jun 27, 2014

† Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transc... more † Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. † Scope In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. † Conclusions This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development.

Research paper thumbnail of The Genetic Basis of Floral Organ Identity and Its Applications in Ornamental Plant Breeding

Handbook of plant breeding, 2018

Petunia hybrida (or garden petunia) is worldwide one of the most popular bedding plants. At the s... more Petunia hybrida (or garden petunia) is worldwide one of the most popular bedding plants. At the same time, petunia has a decades-long history as a model species for scientific research to study a variety of processes, including floral organ development. Here we explain the genetic basis of floral organ identity in a comprehensible manner and illustrate the potential of floral organ identity mutants for ornamental plant breeding, using petunia as an example. Although the B- and C-floral organ identity functions are well conserved at the molecular level, indicating broad applicability, different species may exhibit significant differences in the degree of redundancy versus subfunctionalization/specialization among duplicated pairs of the homeotic genes. This is a direct consequence of the complex origin of different plant genomes, which were shaped by whole-genome, large and small-scale duplication events, often leading to (partial) genetic redundancy. Since classical genetic screens only can uncover nonredundant functions, this is probably the main reason why the use of floral organ identity mutants as breeding targets has remained unexplored in many ornamentals. We discuss how different breeding strategies may cope with this phenomenon.

Research paper thumbnail of Comparative functional analysis of WOX genes during flower development in Petunia and Arabidopsis

In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to coloniz... more In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to colonize a large variety of ecological niches on our planet. The two species Petunia x hybrida and Arabidopsis thaliana represent two major groups of flowering plants. In this work, we have shown that HOMEOBOX genes from the WOX family (Wuschel homeoboxes) are heavily involved in polar organ development (such as leaves and sepals, petals, and carpels at the flower level). The maw mawb double mutant in Petunia displays string-like petals, with consequent disappearance of the floral tube. Moreover, we found that these two genes genetically interact with genes from a different family (the MADS family) in ovule identity (ovules are the structures from which seeds develop). We have also shown that other genes from the WOX family are involved in development of a different kind of structures in Petunia: the trichomes. Trichomes are involved in different tasks, protecting the plant from pathogens or abiotic stress. Thanks to functional genetics studies, we have shown functional genetic recruitment of these WOX genes among different plant organs and among different species. This PhD thesis provides evidence for the importance of the WOX family in Evo-Devo studies. Eventually, we unravelled genetic networks controlled by MAW and MAWB trough RNA-Seq analysis.

Research paper thumbnail of Lateral development of floral organs: Unraveling the role of MAEWEST and MAEWESTB in Petunia

Research paper thumbnail of Analyse comparative fonctionnelle des gènes WOX impliqués dans le développement de la fleur chez Petunia et Arabidopsis

In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to coloniz... more In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to colonize a large variety of ecological niches on our planet. The two species Petunia x hybrida and Arabidopsis thaliana represent two major groups of flowering plants. In this work, we have shown that HOMEOBOX genes from the WOX family (Wuschel homeoboxes) are heavily involved in polar organ development (such as leaves and sepals, petals, and carpels at the flower level). The maw mawb double mutant in Petunia displays string-like petals, with consequent disappearance of the floral tube. Moreover, we found that these two genes genetically interact with genes from a different family (the MADS family) in ovule identity (ovules are the structures from which seeds develop). We have also shown that other genes from the WOX family are involved in development of a different kind of structures in Petunia: the trichomes. Trichomes are involved in different tasks, protecting the plant from pathogens or ab...

Research paper thumbnail of The role of WOX genes in flower development

Annals of Botany, 2014

† Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transc... more † Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. † Scope In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. † Conclusions This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development.

Research paper thumbnail of Comparative functional analysis of WOX genes during flower development in Petunia and Arabidopsis

In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to coloniz... more In the Kingdom of Plants, the emergence of flowers was a crucial step in their ability to colonize a large variety of ecological niches on our planet. The two species Petunia x hybrida and Arabidopsis thaliana represent two major groups of flowering plants. In this work, we have shown that HOMEOBOX genes from the WOX family (Wuschel homeoboxes) are heavily involved in polar organ development (such as leaves and sepals, petals, and carpels at the flower level). The maw mawb double mutant in Petunia displays string-like petals, with consequent disappearance of the floral tube. Moreover, we found that these two genes genetically interact with genes from a different family (the MADS family) in ovule identity (ovules are the structures from which seeds develop). We have also shown that other genes from the WOX family are involved in development of a different kind of structures in Petunia: the trichomes. Trichomes are involved in different tasks, protecting the plant from pathogens or ab...

Research paper thumbnail of The Genetic Basis of Floral Organ Identity and Its Applications in Ornamental Plant Breeding

Petunia hybrida (or garden petunia) is worldwide one of the most popular bedding plants. At the s... more Petunia hybrida (or garden petunia) is worldwide one of the most popular bedding plants. At the same time, petunia has a decades-long history as a model species for scientific research to study a variety of processes, including floral organ development. Here we explain the genetic basis of floral organ identity in a comprehensible manner and illustrate the potential of floral organ identity mutants for ornamental plant breeding, using petunia as an example. Although the B- and C-floral organ identity functions are well conserved at the molecular level, indicating broad applicability, different species may exhibit significant differences in the degree of redundancy versus subfunctionalization/specialization among duplicated pairs of the homeotic genes. This is a direct consequence of the complex origin of different plant genomes, which were shaped by whole-genome, large and small-scale duplication events, often leading to (partial) genetic redundancy. Since classical genetic screens ...