Cynthia Bethea - Academia.edu (original) (raw)

Papers by Cynthia Bethea

Research paper thumbnail of Preliminary Examination of Olanzapine and Diet Interactions On Metabolism in a Female Macaque

Journal of endocrinology and diabetes

Clinical data suggest that atypical antipsychotics such as olanzapine (OLZ) induce significant me... more Clinical data suggest that atypical antipsychotics such as olanzapine (OLZ) induce significant metabolic changes that are serious side effects of their primary use. Since controlled human studies are problematic and rodent data may be poorly translatable, we have initiated development of a macaque model of OLZ-induced metabolic disease. In this preliminary feasibility study, we examined some metabolic effects of OLZ in a female macaque in the context of a standard low-calorie/fat monkey chow diet followed by a high-fat/sugar Western-style diet (WSD). A female Japanese macaque was administered OLZ (1.25 mg/day) for 6 months, with dietary changes at 2-month intervals as follows: OLZ+Restricted chow, OLZ+Unrestricted chow, OLZ+WSD, and placebo+WSD. Weight was assessed weekly. Glucose tolerance tests (GTT) and Dexascans were performed at baseline and every 2 months. Omental (OM) and subcutaneous (SQ) adipose tissue biopsies were obtained at baseline, after OLZ+Unrestricted chow and afte...

Research paper thumbnail of Sex-Specific Differences in Lipid and Glucose Metabolism

Frontiers in Endocrinology, 2015

Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect ... more Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates.

Research paper thumbnail of Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity

This chapter reviews the neurobiological effects of stress sensitivity and CIT treatment observed... more This chapter reviews the neurobiological effects of stress sensitivity and CIT treatment observed in our nonhuman primate model of Functional Hypothalamic Amenorrhea (FHA). This type of infertility, also known as stress-induced amenorrhea, is exhibited by cynomolgus macaques. In small populations, some individuals are stress sensitive (SS) and others are highly stress resilient (HSR). The SS macaques have suboptimal secretion of estrogen and progesterone during normal menstrual cycles. SS monkeys also have decreased serotonin gene expression and increased CRF expression compared to HSR monkeys. Recently, we found that s-citalopram (CIT) treatment improved ovarian steroid secretion in SS monkeys, but had no effect in HSR monkeys. Examination of the serotonin system revealed that SS monkeys had significantly lower Fev (fifth Ewing variant, rodent Pet1), TPH2 (tryptophan hydroxylase 2), 5HT1A autoreceptor and SERT (serotonin reuptake transporter) expression in the dorsal raphe than SR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. In contrast, SS monkeys tended to a higher density of CRF fiber innervation of the dorsal raphe than HSR monkeys, and CIT significantly decreased the CRF fiber density in SS animals. In addition, CIT increased CRF-R2 gene expression in the dorsal raphe. We speculate that in a 15-week time frame, the therapeutic effect of S-citalopram may be achieved through a mechanism involving extracellular serotonin inhibition of CRF and stimulation of CRF-R2, rather than alteration of serotonin-related gene expression.

Research paper thumbnail of Preliminary array analysis reveals novel genes regulated by ovarian steroids in the monkey raphe region

Psychopharmacology, 2005

We hypothesize that ovarian hormones may improve serotonin neuron survival. We sought the effect ... more We hypothesize that ovarian hormones may improve serotonin neuron survival. We sought the effect of estradiol (E) and progesterone (P) on novel gene expression in the macaque dorsal raphe region with Affymetrix array analysis. Nine spayed rhesus macaques were treated with either placebo, E or E+P via Silastic implant for 1 month prior to euthanasia (n=3 per treatment). RNA was extracted from a small block of midbrain containing the dorsal raphe and examined on an Agilent Bioanalyzer. The RNA from each monkey was labeled and hybridized to an Affymetrix HG_U95AV Human GeneChip Array. After filtering and sorting, 25 named genes remained that were regulated by E, and 24 named genes remained that were regulated by supplemental P. These genes further sorted into functional categories that would promote neuronal plasticity, transmitter synthesis, and trafficking, as well as reduce apoptosis. The relative abundance of four pivotal genes was examined in all nine animals with quantitative RT-PCR and normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH). E+/-P caused a significant threefold reduction in JNK-1 (a pro-apoptosis gene, p<0.007); and a significant sixfold decrease in kynurenine mono-oxygenase (produces neurotoxic quinolones, p<0.05). GABA-A receptor (alpha3 subunit; benzodiazepine site) and E2F1 (interferes with cytokine signaling) were unaffected by E, but increased sevenfold (p<0.02) and fourfold (p<0.009), respectively, upon treatment with P. In summary, subsets of genes related to tissue remodeling or apoptosis were up- or down-regulated by E and P in a tissue block containing the dorsal raphe. These changes could promote cellular resilience in the region where serotonin neurons originate.

Research paper thumbnail of Ovarian steroid regulation of monoamine oxidase-A and B mRNAs in the macaque dorsal raphe and hypothalamic nuclei

Psychopharmacology, 2002

Rationale: The serotonin neural system plays a pivotal role in mood, affective regulation and int... more Rationale: The serotonin neural system plays a pivotal role in mood, affective regulation and integrative cognition, as well as numerous autonomic functions. We have shown that ovarian steroids alter the expression of several genes in the dorsal raphe of macaques, which may increase serotonin synthesis and decrease serotonin autoinhibition. Another control point in aminergic neurotransmission involves degradation by MAO. This enzyme occurs in two isoforms, A and B, which have different substrate preferences. Objectives: We questioned the effect of ovarian steroid hormones on MAO-A and MAO-B mRNA expression in the dorsal raphe nucleus and hypothalamus using in situ hybridization in nonhuman primates. Methods: Rhesus monkeys (Macaca mulatta; n=5/group) were spayed and either placebo treated (controls), estrogen (E) treated (28 days), progesterone (P) treated (14 days placebo+14 days P), or E+P treated (14 days E+14 days E+P). Perfusion-fixed sections (25 µm) were hybridized with a 233 bp MAO-A, or a 373 bp MAO-B, radiolabeled-antisense monkey specific probes. Autoradiographic films were analyzed by densitometry, which was performed with NIH Image Software. Results: MAO-A and -B mRNAs were detected in the dorsal raphe nucleus (DRN) and in the hypothalamic suprachiasmatic nucleus (SCN), preoptic area (POA), paraventricular nucleus (PVN), supraoptic nucleus (SON), lateral hypothalamus (LH) and ventromedial nucleus (VMN). MAO-A mRNA optical density was significantly decreased by E, P, and E+P in the DRN and in the hypothalamic PVN, LH and VMN. Ovarian hormones had no effect on MAO-B mRNA expression in the DRN. However, there was a significant decrease in MAO-B optical density in the hypothalamic POA, LH and VMN with E, P or E+P treatment. Pixel area generally reflected optical density. Conclusions: Ovarian steroids decreased MAO-A, but not B, in the raphe nucleus. However, both MAO-A and B were decreased in discrete hypothalamic nuclei by hormone replacement. These data suggest that the transcriptional regulation of MAO by ovarian steroids may play a role in serotonin or catecholamine neurotransmission and hence, mood, affect or cognition in humans.

Research paper thumbnail of Effects of oral estrogen, raloxifene and arzoxifene on gene expression in serotonin neurons of macaques

Psychoneuroendocrinology, 2002

The serotonin neural system contributes to cognition and affect, both of which exhibit pathologie... more The serotonin neural system contributes to cognition and affect, both of which exhibit pathologies with gender bias. We previously showed that estrogen (E) treatment of female macaques via Silastic implant alters gene expression for tryptophan hydroxylase (TPH), the serotonin reuptake transporter (SERT) and the 5HT1A autoreceptor. In addition, we have found that serotonin neurons of macaques express ER beta (ER beta). Together these studies suggest that the serotonin neural system could transduce the action of estrogen via ER beta on aspects of mood and cognition. However, estrogen replacement therapy can increase the risk for breast and uterine cancer. Therefore, we questioned whether the selective estrogen receptor modulators, raloxifene and arzoxifene, act in a manner similar to E on gene expression in serotonin neurons of a nonhuman primate model. Female rhesus macaques were ovariectomized and orally dosed with vehicle, estradiol 17beta, raloxifene or arzoxifene once per day by sipper bottles for 30 days. The animals were then euthanized and the midbrains were prepared for in situ hybridization for TPH, SERT and 5HT1A receptor mRNAs followed by densitometric analysis. There was a significant increase in TPH total signal (positive pixelsxOD) with E, raloxifene and arzoxifene, respectively. There was a significant decrease in SERT mRNA optical density with all treatments. 5HT1A autoreceptor mRNA did not change with any treatment. If these changes in gene expression are reflected by similar changes in the functional proteins, then raloxifene or arzoxifene could increase serotonin neurotransmission with little or no negative action in peripheral tissues. In conclusion, the selective estrogen receptor modulators, raloxifene and arzoxifene, act in a manner similar to natural E on TPH and SERT mRNA expression in serotonin neurons. This suggests that raloxifene and arzoxifene are agonists at ER beta in the context of the serotonin neuron. However, the responses to E were more variable and less robust with the oral dosing paradigm compared to a chronic implant paradigm.

Research paper thumbnail of Ovarian Steroid Regulation of 5-HT1A Receptor Binding and G protein Activation in Female Monkeys

Neuropsychopharmacology, 2002

Serotonin 5-HT(1A) receptors play an important role in serotonin neurotransmission and mental hea... more Serotonin 5-HT(1A) receptors play an important role in serotonin neurotransmission and mental health. We previously demonstrated that estradiol (E) and progesterone (P) decrease 5-HT(1A) autoreceptor mRNA levels in macaques. In this study, we questioned whether E and P regulate 5-HT(1A) binding and function and G(alpha) subunit protein expression. Quantitative autoradiography for 5-HT(1A) receptors and G proteins using [3H]8-OH-DPAT and [35S]GTP-gamma-S, respectively, was performed on brain sections of rhesus macaques from four treatment groups: ovariectomized controls (OVX), E (28 d), P (28 d), and E (28 d) plus P (the last 14 d) treated. Western blot analysis for G(alpha) subunits was performed on raphe extracts from cynomolgus macaques that were OVX or OVX treated with equine estrogens (EE, 30 months). In the hypothalamus, E or E + P but not P alone decreased postsynaptic 5-HT(1A) binding sites. In the dorsal raphe nucleus (DRN), E, P, and E + P treatments decreased 5-HT(1A) autoreceptor binding. The Kd values for 8-OH-DPAT were the same for each treatment group. Both the basal and the R-(+)-8-OH-DPAT stimulated [35S]GTP-gamma-S binding were decreased during hormone replacement whereas the coupling efficiency between the receptor and G proteins was maintained. Finally, EE treatment reduced the level of G(alphai3), but not G(alphai1), G(alphao), and G(alphaz) in the DRN. In conclusion, these observations suggest that ovarian hormones may increase serotonin neurotransmission, in part, by decreasing 5-HT(1A) autoreceptors, 5-HT(1A) postsynaptic receptors, and the inhibitory G proteins for intracellular signal transduction.

Research paper thumbnail of Neurobiology of Stress-Induced Reproductive Dysfunction in Female Macaques

Molecular Neurobiology, 2008

It is now well accepted that stress can precipitate mental and physical illness. However, it is b... more It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable character-istics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (stress sensitive) or to continue to ovulate (stress resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress-sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus, and have reduced gonadotropin-releasing hormone transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress-sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases.

Research paper thumbnail of Characterization of reproductive steroid receptors and response to estrogen in a rat serotonergic cell line

Journal of Neuroscience Methods, 2003

Study of the cellular and molecular consequences of steroid hormone action in the serotonin neura... more Study of the cellular and molecular consequences of steroid hormone action in the serotonin neural system will provide new avenues for pharmacotherapeutic intervention in mental illness related to reproductive function. However, it is difficult to probe intracellular mechanisms with whole animal models. We sought the steroid receptor compliment and estrogen response of two rat serotonin cell lines in order to determine if they could be of future assistance in this matter. Immunohistochemistry with a panel of antibodies, RT-PCR and a serotonin ELISA were utilized to characterize the RN46A-V1 cells (herein called RN46A), and the subclone RN46A-B14 (herein called B14) that is stably transfected with brain derived neurotrophic factor (BDNF). RN46A and B14 cells express estrogen receptor beta (ERbeta), androgen receptors (AR) and nuclear factor kappa B (NFkappaB) but not estrogen receptor alpha (ERalpha) or progestin receptors (PR). RT-PCR confirmed the presence of ERbeta and the absence of ERalpha and PR in both cell lines. B14 cells contain more immunodetectable BDNF and serotonin than the RN46A parent line. In addition, immunofluorescence for the serotonin reuptake transporter (SERT) was observed in the cell body region of undifferentiated B14 cells. After differentiation at a nonpermissive temperature, SERT immunostaining was observed in both the cell body region and along the extent of the axons. Serotonin content as determined by ELISA was higher in B14 than RN46A cells. Estrogen (0.1 and 1.0 nM) stimulated serotonin in the B14 cells in serum free medium. In summary, the RN46A cells and the B14 subclone contain the same compliment of nuclear steroid receptors as rat raphe serotonin neurons and thus may provide a convenient in vitro model for study of intracellular mechanisms of action of steroid hormones in the context of a serotonin neuron.

Research paper thumbnail of Hypothalamic KISS1 Expression, Gonadotrophin-Releasing Hormone and Neurotransmitter Innervation Vary with Stress and Sensitivity in Macaques

Journal of Neuroendocrinology, 2014

The present study examined the effect of short-term psychosocial and metabolic stress in a monkey... more The present study examined the effect of short-term psychosocial and metabolic stress in a monkey model of stress-induced amenorrhaea on the hypothalamic-pituitary-gonadal axis. KISS1 expression was determined by in situ hybridisation in the infundibular arcuate nucleus. Downstream of KISS1, gonadotrophin-releasing hormone (GnRH) axons in lateral areas rostral to the infundibular recess, serum luteinising hormone (LH) and serum oestradiol were measured by immunohistochemistry and radioimmunoassay. Upstream of KISS1, norepinephrine axons in the rostral arcuate nucleus and serotonin axons in the anterior hypothalamus and periaqueductal grey were measured by immunohistochemistry. Female cynomolgus macaques (Macaca fascicularis) characterised as highly stress resilient (HSR) or stress sensitive (SS) were examined. After characterisation of stress sensitivity, monkeys were either not stressed, or mildly stressed for 5 days before euthanasia in the early follicular phase. Stress consisted of 5 days of 20% food reduction in a novel room with unfamiliar conspecifics. There was a significant increase in KISS1 expression in HSR and SS animals in the presence versus absence of stress (P = 0.005). GnRH axon density increased with stress in HSR and SS animals (P = 0.015), whereas LH showed a gradual but nonsignificant increase with stress. Oestradiol trended higher in HSR animals and there was no effect of stress (P = 0.83). Norepinephrine axon density (marked with dopamine β-hydroxylase) increased with stress in both HSR and SS groups (P ≤ 0.002), whereas serotonin axon density was higher in HSR compared to SS animals and there was no effect of stress (P = 0.03). The ratio of dopamine β-hydroxylase/oestradiol correlated with KISS1 (P = 0.052) and GnRH correlated with serum LH (P = 0.039). In conclusion, oestradiol inhibited KISS1 in the absence of stress, although stress increased norepinephrine, which may over-ride oestradiol inhibition of KISS1 expression. We speculate that neural pathways transduce stress to KISS1 neurones, which changes their sensitivity to oestradiol.

Research paper thumbnail of Expression profile of differentiating serotonin neurons derived from rhesus embryonic stem cells and comparison to adult serotonin neurons

Gene Expression Patterns, 2009

The rhesus monkey embryonic stem cell line 366.4 differentiates into serotonin neurons. We examin... more The rhesus monkey embryonic stem cell line 366.4 differentiates into serotonin neurons. We examined the genetic cascade during differentiation and compared ESC-derived serotonin neurons to adult monkey serotonin neurons. RNA was extracted from ESC colonies, embryoid bodies (EBs), neurospheres in selection (N1) and proliferation stages (N2), differentiated serotonin neurons (N3) and from laser captured (LC) serotonin neurons of spayed female macaques treated with placebo, estrogen (E), progesterone (P) or E + P. The RNA was labeled and hybridized to Rhesus Monkey Affymetrix Gene Chips (n = 1 per stage and 2 per animal treatment). Gene expression was examined with GeneSifter software. 545 genes that were related to developmental processes showed a threefold or greater change between stages. TGFb, Wnt, VEGF and Hedgehog signaling pathways showed the highest percent of probe set changes during differentiation. Genes in the categories (a) homeobox binding and transcription factors, (b) growth factors and receptors, (c) brain and neural specific factors and (d) serotonin specific factors are reported. Pivotal genes were confirmed with quantitative RT-PCR. In the serotonin developmental cascade, FGFR2 was robustly expressed at each stage. GATA3 was robustly expressed in EBs. Sonic hedgehog (Shh), PTCH (Shh-R) and Fev1 transcription factor expression coincided with the induction of serotonin specific marker genes during N1-selection. A majority of the examined genes were expressed in adult serotonin neurons. However, in the ESC-derived neurons, there was significant over-representation of probe sets related to cell cycle, axon guidance & dorso-ventral axis formation. This analysis suggests that the 366.4 cell line possesses cues for serotonin differentiation at early stages of differentiation, but that ESC-derived serotonin neurons are still immature.

Research paper thumbnail of Nuclear factor kappa B in the dorsal raphe of macaques: Anatomical link for steroids, cytokines and serotonin

Frontiers in Neuroendocrinology, 2006

Nuclear factor kappa B (NFkappaB) is a transcription factor that activates gene expression in res... more Nuclear factor kappa B (NFkappaB) is a transcription factor that activates gene expression in response to proinflammatory cytokines, and elevated cytokines are associated with depression, which has a serotonergic component. We questioned (1) whether serotonin neurons contain NFkappaB, (2) whether NFkappaB detection with immunocytochemistry is changed in the dorsal raphe nucleus (DRN) by ovarian hormone treatment and (3) whether ovarian hormones regulate midbrain NFkappaB gene or protein expression. Monkeys were spayed and treated with placebo, estrogen (E), progesterone (P) or E+P for 1 month (n = 4 animals/treatment group), and the midbrain was harvested for immunocytochemistry and stereology. An antibody that detects nuclear location-specific (NLS)-NFkappaB p65 was applied, and the numbers of NLS-NFkappaB-immunopositive cells were counted in 9 sections of the DRN. Additional monkeys were used for Western blot analysis and quantitative reverse transcription-polymerase chain reaction (RT-PCR) for NFkappaB p65. In placebo-treated macaques, neurons were double-immunostained for serotonin and nuclear NFkappaB p65 throughout the DRN. The mean total number of NFkappaB-positive cells equalled 2178 (and standard error of the mean [SEM] 129) in the placebo group, 1631 (SEM 221) in the E-treated group, 2314 (SEM 186) in the P-treated group and 1162 (SEM 100) in the E+P-treated group (analysis of variance p = 0.003). The E-treated and E+P-treated groups had a significantly lower density of cells stained positive for NFkappaB than the placebo or P-treated groups (post hoc). Unmasking of NLS-NFkappaB immunostaining in the DRN revealed dense immunostaining in the cytoplasm of large dorsal raphe neurons. There was no difference between treatment groups in the amount of NFkappaB p65 detected by Western blot or in the relative expression of NFkappaB p65 mRNA with quantitative RT-PCR. These observations are consistent with the notion that gene and protein expression of NFkappaB are constitutive but that ovarian hormones can decrease the nuclear location of NFkappaB in dorsal raphe neurons and, thereby, decrease the ability of NFkappaB to drive gene expression in response to cytokines.

Research paper thumbnail of Diverse Actions of Ovarian Steroids in the Serotonin Neural System

Frontiers in Neuroendocrinology, 2002

All of the serotonin-producing neurons of the mammalian brain are located in 10 nuclei in the mid... more All of the serotonin-producing neurons of the mammalian brain are located in 10 nuclei in the mid-and hindbrain regions. The cells of the rostal nuclei project to almost every area of the forebrain and regulate diverse neural processes from higher order functions in the prefrontal cortex such as integrative cognition and memory, to limbic system control of arousal and mood, to diencephalic functions such as pituitary hormone secretion, satiety, and sexual behavior. The more caudal serotonin neurons project to the spinal cord and interact with numerous autonomic and sensory systems. All of these neural functions are sensitive to the presence or absence of the ovarian hormones, estrogen and progesterone. We have shown that serotonin neurons in nonhuman primates contain estrogen receptor ␤ and progestin receptors. Thus, they are targets for ovarian steroids which in turn modify gene expression. Any change in serotoninergic neural function could be manifested by a change in any of the projection target systems and in this manner, serotonin neurons integrate steroid hormone information and partially transduce their action in the CNS. This article reviews the work conducted in this laboratory on the actions of estrogens and progestins in the serotonin neural system of nonhuman primates. Comparisons to results obtained in other laboratory animal models are made when available and limited clinical data are referenced. The ability of estrogens and progestins to alter the function of the serotonin neural system at various levels provides a cellular mechanism whereby ovarian hormones can impact cognition, mood or arousal, hormone secretion, pain, and other neural circuits.

Research paper thumbnail of Distribution of estrogen receptor beta (ERβ) mRNA in hypothalamus, midbrain and temporal lobe of spayed macaque: continued expression with hormone replacement

Molecular Brain Research, 2000

This study used in situ hybridization (ISH) to examine the distribution of estrogen receptor beta... more This study used in situ hybridization (ISH) to examine the distribution of estrogen receptor beta (ERβ) mRNA in hypothalamic, limbic, and midbrain regions of monkey brain and its regulation by estrogen (E) and progesterone (P). Monkey-specific ERβ cDNAs were developed with human primers and reverse transcription and polymerase chain reaction (RT-PCR) using mRNA extracted from a rhesus monkey prostate gland.

Research paper thumbnail of 5-HTTLPR genotype and gender, but not chronic fluoxetine administration, are associated with cortical TREK1 protein expression in rhesus macaques

Neuroscience Letters, 2011

TREK1 is a widely expressed background potassium channel. Similar to mice treated with selective ... more TREK1 is a widely expressed background potassium channel. Similar to mice treated with selective serotonin reuptake inhibitors (SSRIs), TREK1 knockout mice are resistant to depression-like behavior and have elevated serotonin levels leading to speculation that TREK1 inhibition may contribute to the therapeutic effects of SSRIs. This study examined how chronic fluoxetine administration and a common functional polymorphism in the serotonin-transporter-linked

Research paper thumbnail of Preliminary Examination of Olanzapine and Diet Interactions On Metabolism in a Female Macaque

Journal of endocrinology and diabetes

Clinical data suggest that atypical antipsychotics such as olanzapine (OLZ) induce significant me... more Clinical data suggest that atypical antipsychotics such as olanzapine (OLZ) induce significant metabolic changes that are serious side effects of their primary use. Since controlled human studies are problematic and rodent data may be poorly translatable, we have initiated development of a macaque model of OLZ-induced metabolic disease. In this preliminary feasibility study, we examined some metabolic effects of OLZ in a female macaque in the context of a standard low-calorie/fat monkey chow diet followed by a high-fat/sugar Western-style diet (WSD). A female Japanese macaque was administered OLZ (1.25 mg/day) for 6 months, with dietary changes at 2-month intervals as follows: OLZ+Restricted chow, OLZ+Unrestricted chow, OLZ+WSD, and placebo+WSD. Weight was assessed weekly. Glucose tolerance tests (GTT) and Dexascans were performed at baseline and every 2 months. Omental (OM) and subcutaneous (SQ) adipose tissue biopsies were obtained at baseline, after OLZ+Unrestricted chow and afte...

Research paper thumbnail of Sex-Specific Differences in Lipid and Glucose Metabolism

Frontiers in Endocrinology, 2015

Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect ... more Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates.

Research paper thumbnail of Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity

This chapter reviews the neurobiological effects of stress sensitivity and CIT treatment observed... more This chapter reviews the neurobiological effects of stress sensitivity and CIT treatment observed in our nonhuman primate model of Functional Hypothalamic Amenorrhea (FHA). This type of infertility, also known as stress-induced amenorrhea, is exhibited by cynomolgus macaques. In small populations, some individuals are stress sensitive (SS) and others are highly stress resilient (HSR). The SS macaques have suboptimal secretion of estrogen and progesterone during normal menstrual cycles. SS monkeys also have decreased serotonin gene expression and increased CRF expression compared to HSR monkeys. Recently, we found that s-citalopram (CIT) treatment improved ovarian steroid secretion in SS monkeys, but had no effect in HSR monkeys. Examination of the serotonin system revealed that SS monkeys had significantly lower Fev (fifth Ewing variant, rodent Pet1), TPH2 (tryptophan hydroxylase 2), 5HT1A autoreceptor and SERT (serotonin reuptake transporter) expression in the dorsal raphe than SR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. In contrast, SS monkeys tended to a higher density of CRF fiber innervation of the dorsal raphe than HSR monkeys, and CIT significantly decreased the CRF fiber density in SS animals. In addition, CIT increased CRF-R2 gene expression in the dorsal raphe. We speculate that in a 15-week time frame, the therapeutic effect of S-citalopram may be achieved through a mechanism involving extracellular serotonin inhibition of CRF and stimulation of CRF-R2, rather than alteration of serotonin-related gene expression.

Research paper thumbnail of Preliminary array analysis reveals novel genes regulated by ovarian steroids in the monkey raphe region

Psychopharmacology, 2005

We hypothesize that ovarian hormones may improve serotonin neuron survival. We sought the effect ... more We hypothesize that ovarian hormones may improve serotonin neuron survival. We sought the effect of estradiol (E) and progesterone (P) on novel gene expression in the macaque dorsal raphe region with Affymetrix array analysis. Nine spayed rhesus macaques were treated with either placebo, E or E+P via Silastic implant for 1 month prior to euthanasia (n=3 per treatment). RNA was extracted from a small block of midbrain containing the dorsal raphe and examined on an Agilent Bioanalyzer. The RNA from each monkey was labeled and hybridized to an Affymetrix HG_U95AV Human GeneChip Array. After filtering and sorting, 25 named genes remained that were regulated by E, and 24 named genes remained that were regulated by supplemental P. These genes further sorted into functional categories that would promote neuronal plasticity, transmitter synthesis, and trafficking, as well as reduce apoptosis. The relative abundance of four pivotal genes was examined in all nine animals with quantitative RT-PCR and normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH). E+/-P caused a significant threefold reduction in JNK-1 (a pro-apoptosis gene, p<0.007); and a significant sixfold decrease in kynurenine mono-oxygenase (produces neurotoxic quinolones, p<0.05). GABA-A receptor (alpha3 subunit; benzodiazepine site) and E2F1 (interferes with cytokine signaling) were unaffected by E, but increased sevenfold (p<0.02) and fourfold (p<0.009), respectively, upon treatment with P. In summary, subsets of genes related to tissue remodeling or apoptosis were up- or down-regulated by E and P in a tissue block containing the dorsal raphe. These changes could promote cellular resilience in the region where serotonin neurons originate.

Research paper thumbnail of Ovarian steroid regulation of monoamine oxidase-A and B mRNAs in the macaque dorsal raphe and hypothalamic nuclei

Psychopharmacology, 2002

Rationale: The serotonin neural system plays a pivotal role in mood, affective regulation and int... more Rationale: The serotonin neural system plays a pivotal role in mood, affective regulation and integrative cognition, as well as numerous autonomic functions. We have shown that ovarian steroids alter the expression of several genes in the dorsal raphe of macaques, which may increase serotonin synthesis and decrease serotonin autoinhibition. Another control point in aminergic neurotransmission involves degradation by MAO. This enzyme occurs in two isoforms, A and B, which have different substrate preferences. Objectives: We questioned the effect of ovarian steroid hormones on MAO-A and MAO-B mRNA expression in the dorsal raphe nucleus and hypothalamus using in situ hybridization in nonhuman primates. Methods: Rhesus monkeys (Macaca mulatta; n=5/group) were spayed and either placebo treated (controls), estrogen (E) treated (28 days), progesterone (P) treated (14 days placebo+14 days P), or E+P treated (14 days E+14 days E+P). Perfusion-fixed sections (25 µm) were hybridized with a 233 bp MAO-A, or a 373 bp MAO-B, radiolabeled-antisense monkey specific probes. Autoradiographic films were analyzed by densitometry, which was performed with NIH Image Software. Results: MAO-A and -B mRNAs were detected in the dorsal raphe nucleus (DRN) and in the hypothalamic suprachiasmatic nucleus (SCN), preoptic area (POA), paraventricular nucleus (PVN), supraoptic nucleus (SON), lateral hypothalamus (LH) and ventromedial nucleus (VMN). MAO-A mRNA optical density was significantly decreased by E, P, and E+P in the DRN and in the hypothalamic PVN, LH and VMN. Ovarian hormones had no effect on MAO-B mRNA expression in the DRN. However, there was a significant decrease in MAO-B optical density in the hypothalamic POA, LH and VMN with E, P or E+P treatment. Pixel area generally reflected optical density. Conclusions: Ovarian steroids decreased MAO-A, but not B, in the raphe nucleus. However, both MAO-A and B were decreased in discrete hypothalamic nuclei by hormone replacement. These data suggest that the transcriptional regulation of MAO by ovarian steroids may play a role in serotonin or catecholamine neurotransmission and hence, mood, affect or cognition in humans.

Research paper thumbnail of Effects of oral estrogen, raloxifene and arzoxifene on gene expression in serotonin neurons of macaques

Psychoneuroendocrinology, 2002

The serotonin neural system contributes to cognition and affect, both of which exhibit pathologie... more The serotonin neural system contributes to cognition and affect, both of which exhibit pathologies with gender bias. We previously showed that estrogen (E) treatment of female macaques via Silastic implant alters gene expression for tryptophan hydroxylase (TPH), the serotonin reuptake transporter (SERT) and the 5HT1A autoreceptor. In addition, we have found that serotonin neurons of macaques express ER beta (ER beta). Together these studies suggest that the serotonin neural system could transduce the action of estrogen via ER beta on aspects of mood and cognition. However, estrogen replacement therapy can increase the risk for breast and uterine cancer. Therefore, we questioned whether the selective estrogen receptor modulators, raloxifene and arzoxifene, act in a manner similar to E on gene expression in serotonin neurons of a nonhuman primate model. Female rhesus macaques were ovariectomized and orally dosed with vehicle, estradiol 17beta, raloxifene or arzoxifene once per day by sipper bottles for 30 days. The animals were then euthanized and the midbrains were prepared for in situ hybridization for TPH, SERT and 5HT1A receptor mRNAs followed by densitometric analysis. There was a significant increase in TPH total signal (positive pixelsxOD) with E, raloxifene and arzoxifene, respectively. There was a significant decrease in SERT mRNA optical density with all treatments. 5HT1A autoreceptor mRNA did not change with any treatment. If these changes in gene expression are reflected by similar changes in the functional proteins, then raloxifene or arzoxifene could increase serotonin neurotransmission with little or no negative action in peripheral tissues. In conclusion, the selective estrogen receptor modulators, raloxifene and arzoxifene, act in a manner similar to natural E on TPH and SERT mRNA expression in serotonin neurons. This suggests that raloxifene and arzoxifene are agonists at ER beta in the context of the serotonin neuron. However, the responses to E were more variable and less robust with the oral dosing paradigm compared to a chronic implant paradigm.

Research paper thumbnail of Ovarian Steroid Regulation of 5-HT1A Receptor Binding and G protein Activation in Female Monkeys

Neuropsychopharmacology, 2002

Serotonin 5-HT(1A) receptors play an important role in serotonin neurotransmission and mental hea... more Serotonin 5-HT(1A) receptors play an important role in serotonin neurotransmission and mental health. We previously demonstrated that estradiol (E) and progesterone (P) decrease 5-HT(1A) autoreceptor mRNA levels in macaques. In this study, we questioned whether E and P regulate 5-HT(1A) binding and function and G(alpha) subunit protein expression. Quantitative autoradiography for 5-HT(1A) receptors and G proteins using [3H]8-OH-DPAT and [35S]GTP-gamma-S, respectively, was performed on brain sections of rhesus macaques from four treatment groups: ovariectomized controls (OVX), E (28 d), P (28 d), and E (28 d) plus P (the last 14 d) treated. Western blot analysis for G(alpha) subunits was performed on raphe extracts from cynomolgus macaques that were OVX or OVX treated with equine estrogens (EE, 30 months). In the hypothalamus, E or E + P but not P alone decreased postsynaptic 5-HT(1A) binding sites. In the dorsal raphe nucleus (DRN), E, P, and E + P treatments decreased 5-HT(1A) autoreceptor binding. The Kd values for 8-OH-DPAT were the same for each treatment group. Both the basal and the R-(+)-8-OH-DPAT stimulated [35S]GTP-gamma-S binding were decreased during hormone replacement whereas the coupling efficiency between the receptor and G proteins was maintained. Finally, EE treatment reduced the level of G(alphai3), but not G(alphai1), G(alphao), and G(alphaz) in the DRN. In conclusion, these observations suggest that ovarian hormones may increase serotonin neurotransmission, in part, by decreasing 5-HT(1A) autoreceptors, 5-HT(1A) postsynaptic receptors, and the inhibitory G proteins for intracellular signal transduction.

Research paper thumbnail of Neurobiology of Stress-Induced Reproductive Dysfunction in Female Macaques

Molecular Neurobiology, 2008

It is now well accepted that stress can precipitate mental and physical illness. However, it is b... more It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable character-istics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (stress sensitive) or to continue to ovulate (stress resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress-sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus, and have reduced gonadotropin-releasing hormone transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress-sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases.

Research paper thumbnail of Characterization of reproductive steroid receptors and response to estrogen in a rat serotonergic cell line

Journal of Neuroscience Methods, 2003

Study of the cellular and molecular consequences of steroid hormone action in the serotonin neura... more Study of the cellular and molecular consequences of steroid hormone action in the serotonin neural system will provide new avenues for pharmacotherapeutic intervention in mental illness related to reproductive function. However, it is difficult to probe intracellular mechanisms with whole animal models. We sought the steroid receptor compliment and estrogen response of two rat serotonin cell lines in order to determine if they could be of future assistance in this matter. Immunohistochemistry with a panel of antibodies, RT-PCR and a serotonin ELISA were utilized to characterize the RN46A-V1 cells (herein called RN46A), and the subclone RN46A-B14 (herein called B14) that is stably transfected with brain derived neurotrophic factor (BDNF). RN46A and B14 cells express estrogen receptor beta (ERbeta), androgen receptors (AR) and nuclear factor kappa B (NFkappaB) but not estrogen receptor alpha (ERalpha) or progestin receptors (PR). RT-PCR confirmed the presence of ERbeta and the absence of ERalpha and PR in both cell lines. B14 cells contain more immunodetectable BDNF and serotonin than the RN46A parent line. In addition, immunofluorescence for the serotonin reuptake transporter (SERT) was observed in the cell body region of undifferentiated B14 cells. After differentiation at a nonpermissive temperature, SERT immunostaining was observed in both the cell body region and along the extent of the axons. Serotonin content as determined by ELISA was higher in B14 than RN46A cells. Estrogen (0.1 and 1.0 nM) stimulated serotonin in the B14 cells in serum free medium. In summary, the RN46A cells and the B14 subclone contain the same compliment of nuclear steroid receptors as rat raphe serotonin neurons and thus may provide a convenient in vitro model for study of intracellular mechanisms of action of steroid hormones in the context of a serotonin neuron.

Research paper thumbnail of Hypothalamic KISS1 Expression, Gonadotrophin-Releasing Hormone and Neurotransmitter Innervation Vary with Stress and Sensitivity in Macaques

Journal of Neuroendocrinology, 2014

The present study examined the effect of short-term psychosocial and metabolic stress in a monkey... more The present study examined the effect of short-term psychosocial and metabolic stress in a monkey model of stress-induced amenorrhaea on the hypothalamic-pituitary-gonadal axis. KISS1 expression was determined by in situ hybridisation in the infundibular arcuate nucleus. Downstream of KISS1, gonadotrophin-releasing hormone (GnRH) axons in lateral areas rostral to the infundibular recess, serum luteinising hormone (LH) and serum oestradiol were measured by immunohistochemistry and radioimmunoassay. Upstream of KISS1, norepinephrine axons in the rostral arcuate nucleus and serotonin axons in the anterior hypothalamus and periaqueductal grey were measured by immunohistochemistry. Female cynomolgus macaques (Macaca fascicularis) characterised as highly stress resilient (HSR) or stress sensitive (SS) were examined. After characterisation of stress sensitivity, monkeys were either not stressed, or mildly stressed for 5 days before euthanasia in the early follicular phase. Stress consisted of 5 days of 20% food reduction in a novel room with unfamiliar conspecifics. There was a significant increase in KISS1 expression in HSR and SS animals in the presence versus absence of stress (P = 0.005). GnRH axon density increased with stress in HSR and SS animals (P = 0.015), whereas LH showed a gradual but nonsignificant increase with stress. Oestradiol trended higher in HSR animals and there was no effect of stress (P = 0.83). Norepinephrine axon density (marked with dopamine β-hydroxylase) increased with stress in both HSR and SS groups (P ≤ 0.002), whereas serotonin axon density was higher in HSR compared to SS animals and there was no effect of stress (P = 0.03). The ratio of dopamine β-hydroxylase/oestradiol correlated with KISS1 (P = 0.052) and GnRH correlated with serum LH (P = 0.039). In conclusion, oestradiol inhibited KISS1 in the absence of stress, although stress increased norepinephrine, which may over-ride oestradiol inhibition of KISS1 expression. We speculate that neural pathways transduce stress to KISS1 neurones, which changes their sensitivity to oestradiol.

Research paper thumbnail of Expression profile of differentiating serotonin neurons derived from rhesus embryonic stem cells and comparison to adult serotonin neurons

Gene Expression Patterns, 2009

The rhesus monkey embryonic stem cell line 366.4 differentiates into serotonin neurons. We examin... more The rhesus monkey embryonic stem cell line 366.4 differentiates into serotonin neurons. We examined the genetic cascade during differentiation and compared ESC-derived serotonin neurons to adult monkey serotonin neurons. RNA was extracted from ESC colonies, embryoid bodies (EBs), neurospheres in selection (N1) and proliferation stages (N2), differentiated serotonin neurons (N3) and from laser captured (LC) serotonin neurons of spayed female macaques treated with placebo, estrogen (E), progesterone (P) or E + P. The RNA was labeled and hybridized to Rhesus Monkey Affymetrix Gene Chips (n = 1 per stage and 2 per animal treatment). Gene expression was examined with GeneSifter software. 545 genes that were related to developmental processes showed a threefold or greater change between stages. TGFb, Wnt, VEGF and Hedgehog signaling pathways showed the highest percent of probe set changes during differentiation. Genes in the categories (a) homeobox binding and transcription factors, (b) growth factors and receptors, (c) brain and neural specific factors and (d) serotonin specific factors are reported. Pivotal genes were confirmed with quantitative RT-PCR. In the serotonin developmental cascade, FGFR2 was robustly expressed at each stage. GATA3 was robustly expressed in EBs. Sonic hedgehog (Shh), PTCH (Shh-R) and Fev1 transcription factor expression coincided with the induction of serotonin specific marker genes during N1-selection. A majority of the examined genes were expressed in adult serotonin neurons. However, in the ESC-derived neurons, there was significant over-representation of probe sets related to cell cycle, axon guidance & dorso-ventral axis formation. This analysis suggests that the 366.4 cell line possesses cues for serotonin differentiation at early stages of differentiation, but that ESC-derived serotonin neurons are still immature.

Research paper thumbnail of Nuclear factor kappa B in the dorsal raphe of macaques: Anatomical link for steroids, cytokines and serotonin

Frontiers in Neuroendocrinology, 2006

Nuclear factor kappa B (NFkappaB) is a transcription factor that activates gene expression in res... more Nuclear factor kappa B (NFkappaB) is a transcription factor that activates gene expression in response to proinflammatory cytokines, and elevated cytokines are associated with depression, which has a serotonergic component. We questioned (1) whether serotonin neurons contain NFkappaB, (2) whether NFkappaB detection with immunocytochemistry is changed in the dorsal raphe nucleus (DRN) by ovarian hormone treatment and (3) whether ovarian hormones regulate midbrain NFkappaB gene or protein expression. Monkeys were spayed and treated with placebo, estrogen (E), progesterone (P) or E+P for 1 month (n = 4 animals/treatment group), and the midbrain was harvested for immunocytochemistry and stereology. An antibody that detects nuclear location-specific (NLS)-NFkappaB p65 was applied, and the numbers of NLS-NFkappaB-immunopositive cells were counted in 9 sections of the DRN. Additional monkeys were used for Western blot analysis and quantitative reverse transcription-polymerase chain reaction (RT-PCR) for NFkappaB p65. In placebo-treated macaques, neurons were double-immunostained for serotonin and nuclear NFkappaB p65 throughout the DRN. The mean total number of NFkappaB-positive cells equalled 2178 (and standard error of the mean [SEM] 129) in the placebo group, 1631 (SEM 221) in the E-treated group, 2314 (SEM 186) in the P-treated group and 1162 (SEM 100) in the E+P-treated group (analysis of variance p = 0.003). The E-treated and E+P-treated groups had a significantly lower density of cells stained positive for NFkappaB than the placebo or P-treated groups (post hoc). Unmasking of NLS-NFkappaB immunostaining in the DRN revealed dense immunostaining in the cytoplasm of large dorsal raphe neurons. There was no difference between treatment groups in the amount of NFkappaB p65 detected by Western blot or in the relative expression of NFkappaB p65 mRNA with quantitative RT-PCR. These observations are consistent with the notion that gene and protein expression of NFkappaB are constitutive but that ovarian hormones can decrease the nuclear location of NFkappaB in dorsal raphe neurons and, thereby, decrease the ability of NFkappaB to drive gene expression in response to cytokines.

Research paper thumbnail of Diverse Actions of Ovarian Steroids in the Serotonin Neural System

Frontiers in Neuroendocrinology, 2002

All of the serotonin-producing neurons of the mammalian brain are located in 10 nuclei in the mid... more All of the serotonin-producing neurons of the mammalian brain are located in 10 nuclei in the mid-and hindbrain regions. The cells of the rostal nuclei project to almost every area of the forebrain and regulate diverse neural processes from higher order functions in the prefrontal cortex such as integrative cognition and memory, to limbic system control of arousal and mood, to diencephalic functions such as pituitary hormone secretion, satiety, and sexual behavior. The more caudal serotonin neurons project to the spinal cord and interact with numerous autonomic and sensory systems. All of these neural functions are sensitive to the presence or absence of the ovarian hormones, estrogen and progesterone. We have shown that serotonin neurons in nonhuman primates contain estrogen receptor ␤ and progestin receptors. Thus, they are targets for ovarian steroids which in turn modify gene expression. Any change in serotoninergic neural function could be manifested by a change in any of the projection target systems and in this manner, serotonin neurons integrate steroid hormone information and partially transduce their action in the CNS. This article reviews the work conducted in this laboratory on the actions of estrogens and progestins in the serotonin neural system of nonhuman primates. Comparisons to results obtained in other laboratory animal models are made when available and limited clinical data are referenced. The ability of estrogens and progestins to alter the function of the serotonin neural system at various levels provides a cellular mechanism whereby ovarian hormones can impact cognition, mood or arousal, hormone secretion, pain, and other neural circuits.

Research paper thumbnail of Distribution of estrogen receptor beta (ERβ) mRNA in hypothalamus, midbrain and temporal lobe of spayed macaque: continued expression with hormone replacement

Molecular Brain Research, 2000

This study used in situ hybridization (ISH) to examine the distribution of estrogen receptor beta... more This study used in situ hybridization (ISH) to examine the distribution of estrogen receptor beta (ERβ) mRNA in hypothalamic, limbic, and midbrain regions of monkey brain and its regulation by estrogen (E) and progesterone (P). Monkey-specific ERβ cDNAs were developed with human primers and reverse transcription and polymerase chain reaction (RT-PCR) using mRNA extracted from a rhesus monkey prostate gland.

Research paper thumbnail of 5-HTTLPR genotype and gender, but not chronic fluoxetine administration, are associated with cortical TREK1 protein expression in rhesus macaques

Neuroscience Letters, 2011

TREK1 is a widely expressed background potassium channel. Similar to mice treated with selective ... more TREK1 is a widely expressed background potassium channel. Similar to mice treated with selective serotonin reuptake inhibitors (SSRIs), TREK1 knockout mice are resistant to depression-like behavior and have elevated serotonin levels leading to speculation that TREK1 inhibition may contribute to the therapeutic effects of SSRIs. This study examined how chronic fluoxetine administration and a common functional polymorphism in the serotonin-transporter-linked