Damien Moodie - Academia.edu (original) (raw)
Uploads
Papers by Damien Moodie
Water e-Journal
Per- and polyfluoroalkyl substances (PFAS) are incredibly useful additives, often providing excel... more Per- and polyfluoroalkyl substances (PFAS) are incredibly useful additives, often providing excellent surface tension-lowering properties to a material. Due to the extensive use of PFAS in daily life in developed countries, PFAS invariably collects in municipal wastewater. Without targeted removal of PFAS at wastewater treatment plants, PFAS can move through the treatment process into both the recycled water and biosolids. The presence of PFAS in biosolids poses a potential challenging problem to society for many reasons. A small number of countries have cautiously started, or have at least considered, limiting the concentration of PFAS permitted in biosolids that are to be used for land application. Our review covers the current limits on PFAS concentrations in Australian biosolids, along with the latest developments in international regulations. We found that only Maine, USA, has set upper limits of PFAS for “beneficial use of solid wastes”. Denmark, Germany, The Netherlands, Swed...
Chemosphere
Biosolids samples were collected from 19 Australian WWTPs during 2018 that cover a range of catch... more Biosolids samples were collected from 19 Australian WWTPs during 2018 that cover a range of catchment types (urban, rural, industrial waste discharges) and treatment technologies. Samples were analysed for 44 PFAS using isotope dilution and alkaline extraction coupled with quantification with LC-MS/MS. The Σ44PFAS mean concentration was 260 ng/g dry weight (dw) and ranged between 4.2 and 910 ng/g dw. The dominant compound class detected were the di-substituted phosphate esters (Σ3PAPs mean 140 ng/g dw; range ND - 730 ng/g dw) which contributed 45% of the total mean Σ44PFAS mass, followed by perfluoroalkyl carboxylic acids (Σ11PFCAs mean 39 ng/g dw; range 2.3-120 ng/g dw) contributing 17%, and the perfluoroalkyl sulfonates (Σ8PFSAs mean 28 ng/g dw; range 0.9-220 ng/g) which contributed 16%. Using the population data supplied by the participating WWTPs, the mean annual estimated biosolids-associated PFAS contribution is 6 mg per person per year and ranged between 0.6 mg and 15 mg. A similar population normalised concentration regardless of WWTP, region or capacity suggests that the domestic environment provides the baseline PFAS loading. Statistically significant higher Σ44PFAS and PFOS concentrations were observed at urban locations. A weak correlation was observed between annual mass of PFAS associated with each individual WWTP and their percentage industrial waste contribution. This may be important for elevated PFAS concentrations observed in WWTPs with higher industrial waste inputs and requires further research.
Quantifying the emissions of per-and polyfluoroalkyl substances (PFAS) from Australian wastewater... more Quantifying the emissions of per-and polyfluoroalkyl substances (PFAS) from Australian wastewater treatment plants (WWTP) is of high importance due to potential impacts on receiving aquatic ecosystems. The new Australian PFAS National Environmental Management Plan recommends 0.23 ng L À1 of PFOS as the guideline value for 99% species protection for aquatic systems. In this study, 21 PFAS from four classes were measured in WWTP solid and aqueous samples from 19 Australian WWTPs. The mean P 21 PFAS was 110 ng L À1 (median: 80 ng L À1 ; range: 9.3-520 ng L À1) in aqueous samples and 34 ng g À1 dw (median: 12 ng g À1 dw; range: 2.0-130 ng g À1 dw) in WWTP solids. Similar to WWTPs worldwide, perfluorocarboxylic acids were generally higher in effluent, compared to influent. Partitioning to solids within WWTPs increased with increasing fluoroalkyl chain length from 0.05 to 1.22 log units. Many PFAS were highly correlated, and PCA analysis showed strong associations between two groups: odd chained PFCAs, PFHxA and PFSAs; and 6:2 FTS with daily inflow volume and the proportion of trade waste accepted by WWTPs (as % of typical dry inflow). The compounds PFPeA, PFHxA, PFHpA, PFOA, PFNA, and PFDA increased significantly between influent and final effluent. The compounds 6:2 FTS and 8:2 FTS were quantified and F-53B detected and reported in Australian WWTP matrices. The compound 6:2 FTS was an important contributor to PFAS emissions in the studied Australian WWTPs, supporting the need for future research on its sources (including precursor degradation), environmental fate and impact in Australian aquatic environments receiving WWTP effluent.
Water e-Journal
Per- and polyfluoroalkyl substances (PFAS) are incredibly useful additives, often providing excel... more Per- and polyfluoroalkyl substances (PFAS) are incredibly useful additives, often providing excellent surface tension-lowering properties to a material. Due to the extensive use of PFAS in daily life in developed countries, PFAS invariably collects in municipal wastewater. Without targeted removal of PFAS at wastewater treatment plants, PFAS can move through the treatment process into both the recycled water and biosolids. The presence of PFAS in biosolids poses a potential challenging problem to society for many reasons. A small number of countries have cautiously started, or have at least considered, limiting the concentration of PFAS permitted in biosolids that are to be used for land application. Our review covers the current limits on PFAS concentrations in Australian biosolids, along with the latest developments in international regulations. We found that only Maine, USA, has set upper limits of PFAS for “beneficial use of solid wastes”. Denmark, Germany, The Netherlands, Swed...
Chemosphere
Biosolids samples were collected from 19 Australian WWTPs during 2018 that cover a range of catch... more Biosolids samples were collected from 19 Australian WWTPs during 2018 that cover a range of catchment types (urban, rural, industrial waste discharges) and treatment technologies. Samples were analysed for 44 PFAS using isotope dilution and alkaline extraction coupled with quantification with LC-MS/MS. The Σ44PFAS mean concentration was 260 ng/g dry weight (dw) and ranged between 4.2 and 910 ng/g dw. The dominant compound class detected were the di-substituted phosphate esters (Σ3PAPs mean 140 ng/g dw; range ND - 730 ng/g dw) which contributed 45% of the total mean Σ44PFAS mass, followed by perfluoroalkyl carboxylic acids (Σ11PFCAs mean 39 ng/g dw; range 2.3-120 ng/g dw) contributing 17%, and the perfluoroalkyl sulfonates (Σ8PFSAs mean 28 ng/g dw; range 0.9-220 ng/g) which contributed 16%. Using the population data supplied by the participating WWTPs, the mean annual estimated biosolids-associated PFAS contribution is 6 mg per person per year and ranged between 0.6 mg and 15 mg. A similar population normalised concentration regardless of WWTP, region or capacity suggests that the domestic environment provides the baseline PFAS loading. Statistically significant higher Σ44PFAS and PFOS concentrations were observed at urban locations. A weak correlation was observed between annual mass of PFAS associated with each individual WWTP and their percentage industrial waste contribution. This may be important for elevated PFAS concentrations observed in WWTPs with higher industrial waste inputs and requires further research.
Quantifying the emissions of per-and polyfluoroalkyl substances (PFAS) from Australian wastewater... more Quantifying the emissions of per-and polyfluoroalkyl substances (PFAS) from Australian wastewater treatment plants (WWTP) is of high importance due to potential impacts on receiving aquatic ecosystems. The new Australian PFAS National Environmental Management Plan recommends 0.23 ng L À1 of PFOS as the guideline value for 99% species protection for aquatic systems. In this study, 21 PFAS from four classes were measured in WWTP solid and aqueous samples from 19 Australian WWTPs. The mean P 21 PFAS was 110 ng L À1 (median: 80 ng L À1 ; range: 9.3-520 ng L À1) in aqueous samples and 34 ng g À1 dw (median: 12 ng g À1 dw; range: 2.0-130 ng g À1 dw) in WWTP solids. Similar to WWTPs worldwide, perfluorocarboxylic acids were generally higher in effluent, compared to influent. Partitioning to solids within WWTPs increased with increasing fluoroalkyl chain length from 0.05 to 1.22 log units. Many PFAS were highly correlated, and PCA analysis showed strong associations between two groups: odd chained PFCAs, PFHxA and PFSAs; and 6:2 FTS with daily inflow volume and the proportion of trade waste accepted by WWTPs (as % of typical dry inflow). The compounds PFPeA, PFHxA, PFHpA, PFOA, PFNA, and PFDA increased significantly between influent and final effluent. The compounds 6:2 FTS and 8:2 FTS were quantified and F-53B detected and reported in Australian WWTP matrices. The compound 6:2 FTS was an important contributor to PFAS emissions in the studied Australian WWTPs, supporting the need for future research on its sources (including precursor degradation), environmental fate and impact in Australian aquatic environments receiving WWTP effluent.