Daniel Eggerichs - Profile on Academia.edu (original) (raw)

Papers by Daniel Eggerichs

Research paper thumbnail of Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase <i>Vp</i> IndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations

Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase Vp IndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations

Angewandte Chemie, Mar 16, 2023

Research paper thumbnail of Myxococcus xanthus Predation of Gram-Positive or Gram-Negative Bacteria Is Mediated by Different Bacteriolytic Mechanisms

Applied and Environmental Microbiology, Feb 12, 2021

Myxococcus xanthus kills other species to use their biomass as an energy source. Its predation me... more Myxococcus xanthus kills other species to use their biomass as an energy source. Its predation mechanisms allow feeding on a broad spectrum of bacteria, but the identity of predation effectors and their mode of action remain largely unknown. We initially focused on the role of hydrolytic enzymes for prey killing and compared the activities of secreted M. xanthus proteins against four prey strains. Seventy-two secreted proteins were identified by mass spectrometry; among them is a family 19 glycoside hydrolase that displayed bacteriolytic activity in vivo and in vitro. This enzyme, which we name LlpM (lectin/lysozyme-like protein of M. xanthus), was not essential for predation, indicating that additional secreted components are required to disintegrate prey. Furthermore, secreted proteins lysed only Gram-positive, not Gram-negative, species. We thus compared the killing of different prey by cell-associated mechanisms: individual M. xanthus cells killed all four test strains in a cell contact-dependent manner but were only able to disintegrate Gram-negative, not Grampositive, cell envelopes. Thus, our data indicate that M. xanthus uses different multifactorial mechanisms for killing and degrading different prey. Besides secreted enzymes, cell-associated mechanisms that have not been characterized so far appear to play a major role in prey killing. IMPORTANCE Predation is an important survival strategy of the widespread myxobacteria, but it remains poorly understood on the mechanistic level. Without a basic understanding of how prey cell killing and consumption is achieved, it also remains difficult to investigate the role of predation for the complex myxobacterial lifestyle, reciprocal predator-prey relationships, or the impact of predation on complex bacterial soil communities. We study predation in the established model organism Myxococcus xanthus, aiming to dissect the molecular mechanisms of prey cell lysis. In this study, we addressed the role of secreted bacteriolytic proteins, as well as potential mechanistic differences in the predation of Gram-positive and Gram-negative bacteria. Our observation shows that secreted enzymes are sufficient for killing and degrading Gram-positive species but that cell-associated mechanisms may play a major role in killing Gram-negative and Gram-positive prey on fast timescales. KEYWORDS bacterial behavior, bacteriolytic enzymes, glycoside hydrolase, outer membrane vesicles M yxobacteria are Deltaproteobacteria that are ubiquitous in tropical and temperate aerobic soils. They display unique patterns of coordinated multicellular behavior, with individual cells building large clusters to glide on semidry surfaces and efficiently access nutrients. When nutrients become scarce, single cells coordinate their motility and aggregate into complex multicellular structures, called fruiting bodies, where they differentiate into spores (1, 2). Myxobacteria preferably use amino acids or small peptides as a carbon and energy

Research paper thumbnail of Inside Cover: Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase <i>Vp</i>IndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations (Angew. Chem. Int. Ed. 17/2023)

Inside Cover: Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase VpIndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations (Angew. Chem. Int. Ed. 17/2023)

Angewandte Chemie, Mar 15, 2023

Research paper thumbnail of Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase <i>Vp</i> IndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen

Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase Vp IndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen

Angewandte Chemie, Mar 16, 2023

Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktion... more Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktionen. Die dazugehörigen Monooxygenasen der Gruppe E (GEMs) katalysieren enantioselektive Epoxidierungs‐ und Sulfoxidierungsreaktionen. In dieser Arbeit beschreiben wir die Kristallstruktur einer Indol‐Monooxygenase aus dem Bakterium Variovorax paradoxus EPS, einer GEM mit der Bezeichnung VpIndA1. Basierend auf Substratkomplexstrukturen produktiver Bindungsmodi und in Verbindung mit Kraftfeldberechnungen sowie durch schnelle Mischungskinetik zeigen wir die strukturelle Grundlage der Substrat‐ und Stereoselektivität auf. Die strukturbasierte Umgestaltung der Substrattasche führte zu Varianten mit neuer Substratselektivität (für die Sulfoxidation von Benzylphenylsulfid) oder mit stark erhöhter Stereoselektivität (von 35.1 % auf 99.8 % ee für die Herstellung von (1S,2R)‐Indenoxid). Diese erste Bestimmung des Substratbindungsmodus von GEMs in Verbindung mit der Untersuchung von Struktur‐Funktions‐Beziehungen öffnet die Tür für ein strukturbasiertes Design dieser leistungsstarken Biokatalysatoren.

Research paper thumbnail of Innentitelbild: Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase <i>Vp</i>IndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen (Angew. Chem. 17/2023)

Innentitelbild: Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase VpIndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen (Angew. Chem. 17/2023)

Angewandte Chemie, Mar 15, 2023

Research paper thumbnail of Vanillyl alcohol oxidase from Diplodia corticola: Residues Ala420 and Glu466 allow for efficient catalysis of syringyl derivatives

Vanillyl alcohol oxidase from Diplodia corticola: Residues Ala420 and Glu466 allow for efficient catalysis of syringyl derivatives

Journal of Biological Chemistry

Research paper thumbnail of Large scale production of vanillin using an eugenol oxidase from Nocardioides sp. YR527

Large scale production of vanillin using an eugenol oxidase from Nocardioides sp. YR527

Molecular Catalysis

Research paper thumbnail of Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase VpIndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen

Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase VpIndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen

Angewandte Chemie

Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktion... more Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktionen. Die dazugehörigen Monooxygenasen der Gruppe E (GEMs) katalysieren enantioselektive Epoxidierungs‐ und Sulfoxidierungsreaktionen. In dieser Arbeit beschreiben wir die Kristallstruktur einer Indol‐Monooxygenase aus dem Bakterium Variovorax paradoxus EPS, einer GEM mit der Bezeichnung VpIndA1. Basierend auf Substratkomplexstrukturen produktiver Bindungsmodi und in Verbindung mit Kraftfeldberechnungen sowie durch schnelle Mischungskinetik zeigen wir die strukturelle Grundlage der Substrat‐ und Stereoselektivität auf. Die strukturbasierte Umgestaltung der Substrattasche führte zu Varianten mit neuer Substratselektivität (für die Sulfoxidation von Benzylphenylsulfid) oder mit stark erhöhter Stereoselektivität (von 35.1 % auf 99.8 % ee für die Herstellung von (1S,2R)‐Indenoxid). Diese erste Bestimmung des Substratbindungsmodus von GEMs in Verbindung mit der Untersuchung von Struktur‐Funktio...

Research paper thumbnail of Myxococcus xanthus Predation of Gram-Positive or Gram-Negative Bacteria Is Mediated by Different Bacteriolytic Mechanisms

Applied and Environmental Microbiology, 2021

Predation is an important survival strategy of the widespread myxobacteria, but it remains poorly... more Predation is an important survival strategy of the widespread myxobacteria, but it remains poorly understood on the mechanistic level. Without a basic understanding of how prey cell killing and consumption is achieved, it also remains difficult to investigate the role of predation for the complex myxobacterial lifestyle, reciprocal predator-prey relationships, or the impact of predation on complex bacterial soil communities.

Research paper thumbnail of Substrate scope expansion of 4-phenol oxidases by rational enzyme selection and sequence-function relations

Communications chemistry, Jun 3, 2024

Research paper thumbnail of Asymmetric reduction of (\(\it R\))‐carvone through a thermostable and organic‐solvent‐tolerant ene‐reductase

Ene‐reductases allow regio‐ and stereoselective reduction of activated C=C double bonds at the ex... more Ene‐reductases allow regio‐ and stereoselective reduction of activated C=C double bonds at the expense of nicotinamide adenine dinucleotide cofactors [NAD(P)H]. Biological NAD(P)H can be replaced by synthetic mimics to facilitate enzyme screening and process optimization. The ene‐reductase \(\it F\)OYE‐1, originating from an acidophilic iron oxidizer, has been described as a promising candidate and is now being explored for applied biocatalysis. Biological and synthetic nicotinamide cofactors were evaluated to fuel \(\it F\)OYE‐1 to produce valuable compounds. A maximum activity of (319.7\(\pm\)3.2) U mg\(^{−1}\) with NADPH or of (206.7\(\pm\)3.4) U mg\(^{−1}\) with 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) for the reduction of \(\it N\)‐methylmaleimide was observed at 30 °C. Notably, BNAH was found to be a promising reductant but exhibits poor solubility in water. Different organic solvents were therefore assayed: \(\it F\)OYE‐1 showed excellent performance in most systems with up to...

Research paper thumbnail of Flavoprotein monooxygenases: Versatile biocatalysts

Biotechnology Advances, 2021

Flavoprotein monooxygenases (FPMOs) are single-or two-component enzymes that catalyze a diverse s... more Flavoprotein monooxygenases (FPMOs) are single-or two-component enzymes that catalyze a diverse set of chemo-, regio-and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.

Research paper thumbnail of Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis

Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis

Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, 2020

Styrene and indole are naturally occurring compounds, which are also produced and processed by va... more Styrene and indole are naturally occurring compounds, which are also produced and processed by various chemical industries. Thus, it is not surprisingly that microorganisms evolved pathways to detoxify or even to utilize those compounds as carbon sources. Especially, among bacteria several routes are described specifically for the activation and degradation of styrene and indole. Respectively, the initial attack toward these compounds occurs via a flavin-dependent monooxygenase: styrene monooxygenase (SMO) or indole monooxygenase (IMO). In the first place, SMOs have been described to initiate a styrene specific degradation. These are in general two-component systems, whereas a small FAD-reductase (SMOB) delivers reduced FAD on the expense of NADH toward the monooxygenase (SMOA). Various modes of interaction are possible and for both mostly dimeric protein subunits structural data were reported. Thus, this flavoprotein monooxygenase-especially the one from Pseudomonas putida S12 can be seen as the prototype of this class of enzymes. In the course of describing related members of this enzyme family some remarkable findings were made. For example, self-sufficient fusion proteins have been reported as well as enzymes, which could not be assigned to a styrene metabolic activity, rather to indole conversion. Later it was found that this flavoprotein group can be separated at least into two subgroups: styrene and indole monooxygenases. And both enzymes rely on a FAD-reductase to obtain the reduced cofactor (FADred), which is employed to activate molecular oxygen toward hydroperoxy-FAD, which allows substrate epoxidation and the formation of hydroxy-FAD, which finally yields H2O and oxidized FAD.

Research paper thumbnail of Asymmetric Reduction of ( R )‐Carvone through a Thermostable and Organic‐Solvent‐Tolerant Ene‐Reductase

ChemBioChem, 2019

This articlei sp art of aj oint Special Collection dedicated to the Biotrans 2019 symposium. To v... more This articlei sp art of aj oint Special Collection dedicated to the Biotrans 2019 symposium. To view the completecollection, visit our homepage Scheme1.Stereoselective reduction of (R)-carvonethrought he action of an ene-reductase(ER). The nicotinamide (biological or synthetic, NA) actsasa n electrondonor to reduce the flavin cofactor FMN of the ER;this subsequently allows the transfer of ah ydride to C a of the unsaturated substrate. Aproton from ac onserved Tyrr esidue in the ER is added to C b to yield (2R,5R)-dihydrocarvone.

Research paper thumbnail of Enantioselective Epoxidation by Flavoprotein Monooxygenases Supported by Organic Solvents

Catalysts, 2020

Styrene and indole monooxygenases (SMO and IMO) are two-component flavoprotein monooxygenases com... more Styrene and indole monooxygenases (SMO and IMO) are two-component flavoprotein monooxygenases composed of a nicotinamide adenine dinucleotide (NADH)-dependent flavin adenine dinucleotide (FAD)-reductase (StyB or IndB) and a monooxygenase (StyA or IndA). The latter uses reduced FAD to activate oxygen and to oxygenate the substrate while releasing water. We circumvented the need for the reductase by direct FAD reduction in solution using the NAD(P)H-mimic 1-benzyl-1,4-dihydronicotinamide (BNAH) to fuel monooxygenases without NADH requirement. Herein, we report on the hitherto unknown solvent tolerance for the indole monooxygenase from Gemmobacter nectariphilus DSM15620 (GnIndA) and the styrene monooxygenase from Gordonia rubripertincta CWB2 (GrStyA). These enzymes were shown to convert bulky and rather hydrophobic styrene derivatives in the presence of organic cosolvents. Subsequently, BNAH-driven biotransformation was furthermore optimized with regard to the applied cosolvent and its...

Research paper thumbnail of Chirale Epoxidierung von Aryl-Alkyl-Ethern aus Lignin

Chirale Epoxidierung von Aryl-Alkyl-Ethern aus Lignin

BIOspektrum

Research paper thumbnail of Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase <i>Vp</i> IndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations

Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase Vp IndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations

Angewandte Chemie, Mar 16, 2023

Research paper thumbnail of Myxococcus xanthus Predation of Gram-Positive or Gram-Negative Bacteria Is Mediated by Different Bacteriolytic Mechanisms

Applied and Environmental Microbiology, Feb 12, 2021

Myxococcus xanthus kills other species to use their biomass as an energy source. Its predation me... more Myxococcus xanthus kills other species to use their biomass as an energy source. Its predation mechanisms allow feeding on a broad spectrum of bacteria, but the identity of predation effectors and their mode of action remain largely unknown. We initially focused on the role of hydrolytic enzymes for prey killing and compared the activities of secreted M. xanthus proteins against four prey strains. Seventy-two secreted proteins were identified by mass spectrometry; among them is a family 19 glycoside hydrolase that displayed bacteriolytic activity in vivo and in vitro. This enzyme, which we name LlpM (lectin/lysozyme-like protein of M. xanthus), was not essential for predation, indicating that additional secreted components are required to disintegrate prey. Furthermore, secreted proteins lysed only Gram-positive, not Gram-negative, species. We thus compared the killing of different prey by cell-associated mechanisms: individual M. xanthus cells killed all four test strains in a cell contact-dependent manner but were only able to disintegrate Gram-negative, not Grampositive, cell envelopes. Thus, our data indicate that M. xanthus uses different multifactorial mechanisms for killing and degrading different prey. Besides secreted enzymes, cell-associated mechanisms that have not been characterized so far appear to play a major role in prey killing. IMPORTANCE Predation is an important survival strategy of the widespread myxobacteria, but it remains poorly understood on the mechanistic level. Without a basic understanding of how prey cell killing and consumption is achieved, it also remains difficult to investigate the role of predation for the complex myxobacterial lifestyle, reciprocal predator-prey relationships, or the impact of predation on complex bacterial soil communities. We study predation in the established model organism Myxococcus xanthus, aiming to dissect the molecular mechanisms of prey cell lysis. In this study, we addressed the role of secreted bacteriolytic proteins, as well as potential mechanistic differences in the predation of Gram-positive and Gram-negative bacteria. Our observation shows that secreted enzymes are sufficient for killing and degrading Gram-positive species but that cell-associated mechanisms may play a major role in killing Gram-negative and Gram-positive prey on fast timescales. KEYWORDS bacterial behavior, bacteriolytic enzymes, glycoside hydrolase, outer membrane vesicles M yxobacteria are Deltaproteobacteria that are ubiquitous in tropical and temperate aerobic soils. They display unique patterns of coordinated multicellular behavior, with individual cells building large clusters to glide on semidry surfaces and efficiently access nutrients. When nutrients become scarce, single cells coordinate their motility and aggregate into complex multicellular structures, called fruiting bodies, where they differentiate into spores (1, 2). Myxobacteria preferably use amino acids or small peptides as a carbon and energy

Research paper thumbnail of Inside Cover: Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase <i>Vp</i>IndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations (Angew. Chem. Int. Ed. 17/2023)

Inside Cover: Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase VpIndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations (Angew. Chem. Int. Ed. 17/2023)

Angewandte Chemie, Mar 15, 2023

Research paper thumbnail of Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase <i>Vp</i> IndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen

Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase Vp IndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen

Angewandte Chemie, Mar 16, 2023

Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktion... more Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktionen. Die dazugehörigen Monooxygenasen der Gruppe E (GEMs) katalysieren enantioselektive Epoxidierungs‐ und Sulfoxidierungsreaktionen. In dieser Arbeit beschreiben wir die Kristallstruktur einer Indol‐Monooxygenase aus dem Bakterium Variovorax paradoxus EPS, einer GEM mit der Bezeichnung VpIndA1. Basierend auf Substratkomplexstrukturen produktiver Bindungsmodi und in Verbindung mit Kraftfeldberechnungen sowie durch schnelle Mischungskinetik zeigen wir die strukturelle Grundlage der Substrat‐ und Stereoselektivität auf. Die strukturbasierte Umgestaltung der Substrattasche führte zu Varianten mit neuer Substratselektivität (für die Sulfoxidation von Benzylphenylsulfid) oder mit stark erhöhter Stereoselektivität (von 35.1 % auf 99.8 % ee für die Herstellung von (1S,2R)‐Indenoxid). Diese erste Bestimmung des Substratbindungsmodus von GEMs in Verbindung mit der Untersuchung von Struktur‐Funktions‐Beziehungen öffnet die Tür für ein strukturbasiertes Design dieser leistungsstarken Biokatalysatoren.

Research paper thumbnail of Innentitelbild: Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase <i>Vp</i>IndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen (Angew. Chem. 17/2023)

Innentitelbild: Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase VpIndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen (Angew. Chem. 17/2023)

Angewandte Chemie, Mar 15, 2023

Research paper thumbnail of Vanillyl alcohol oxidase from Diplodia corticola: Residues Ala420 and Glu466 allow for efficient catalysis of syringyl derivatives

Vanillyl alcohol oxidase from Diplodia corticola: Residues Ala420 and Glu466 allow for efficient catalysis of syringyl derivatives

Journal of Biological Chemistry

Research paper thumbnail of Large scale production of vanillin using an eugenol oxidase from Nocardioides sp. YR527

Large scale production of vanillin using an eugenol oxidase from Nocardioides sp. YR527

Molecular Catalysis

Research paper thumbnail of Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase VpIndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen

Strukturelle und mechanistische Studien zur Substrat‐ und Stereoselektivität der Indol‐Monooxygenase VpIndA1: Neue Wege für biokatalytische Epoxidationen und Sulfoxidationen

Angewandte Chemie

Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktion... more Flavoprotein‐Monooxygenasen sind eine vielseitige Gruppe von Enzymen für biokatalytische Reaktionen. Die dazugehörigen Monooxygenasen der Gruppe E (GEMs) katalysieren enantioselektive Epoxidierungs‐ und Sulfoxidierungsreaktionen. In dieser Arbeit beschreiben wir die Kristallstruktur einer Indol‐Monooxygenase aus dem Bakterium Variovorax paradoxus EPS, einer GEM mit der Bezeichnung VpIndA1. Basierend auf Substratkomplexstrukturen produktiver Bindungsmodi und in Verbindung mit Kraftfeldberechnungen sowie durch schnelle Mischungskinetik zeigen wir die strukturelle Grundlage der Substrat‐ und Stereoselektivität auf. Die strukturbasierte Umgestaltung der Substrattasche führte zu Varianten mit neuer Substratselektivität (für die Sulfoxidation von Benzylphenylsulfid) oder mit stark erhöhter Stereoselektivität (von 35.1 % auf 99.8 % ee für die Herstellung von (1S,2R)‐Indenoxid). Diese erste Bestimmung des Substratbindungsmodus von GEMs in Verbindung mit der Untersuchung von Struktur‐Funktio...

Research paper thumbnail of Myxococcus xanthus Predation of Gram-Positive or Gram-Negative Bacteria Is Mediated by Different Bacteriolytic Mechanisms

Applied and Environmental Microbiology, 2021

Predation is an important survival strategy of the widespread myxobacteria, but it remains poorly... more Predation is an important survival strategy of the widespread myxobacteria, but it remains poorly understood on the mechanistic level. Without a basic understanding of how prey cell killing and consumption is achieved, it also remains difficult to investigate the role of predation for the complex myxobacterial lifestyle, reciprocal predator-prey relationships, or the impact of predation on complex bacterial soil communities.

Research paper thumbnail of Substrate scope expansion of 4-phenol oxidases by rational enzyme selection and sequence-function relations

Communications chemistry, Jun 3, 2024

Research paper thumbnail of Asymmetric reduction of (\(\it R\))‐carvone through a thermostable and organic‐solvent‐tolerant ene‐reductase

Ene‐reductases allow regio‐ and stereoselective reduction of activated C=C double bonds at the ex... more Ene‐reductases allow regio‐ and stereoselective reduction of activated C=C double bonds at the expense of nicotinamide adenine dinucleotide cofactors [NAD(P)H]. Biological NAD(P)H can be replaced by synthetic mimics to facilitate enzyme screening and process optimization. The ene‐reductase \(\it F\)OYE‐1, originating from an acidophilic iron oxidizer, has been described as a promising candidate and is now being explored for applied biocatalysis. Biological and synthetic nicotinamide cofactors were evaluated to fuel \(\it F\)OYE‐1 to produce valuable compounds. A maximum activity of (319.7\(\pm\)3.2) U mg\(^{−1}\) with NADPH or of (206.7\(\pm\)3.4) U mg\(^{−1}\) with 1‐benzyl‐1,4‐dihydronicotinamide (BNAH) for the reduction of \(\it N\)‐methylmaleimide was observed at 30 °C. Notably, BNAH was found to be a promising reductant but exhibits poor solubility in water. Different organic solvents were therefore assayed: \(\it F\)OYE‐1 showed excellent performance in most systems with up to...

Research paper thumbnail of Flavoprotein monooxygenases: Versatile biocatalysts

Biotechnology Advances, 2021

Flavoprotein monooxygenases (FPMOs) are single-or two-component enzymes that catalyze a diverse s... more Flavoprotein monooxygenases (FPMOs) are single-or two-component enzymes that catalyze a diverse set of chemo-, regio-and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.

Research paper thumbnail of Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis

Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis

Flavin-Dependent Enzymes: Mechanisms, Structures and Applications, 2020

Styrene and indole are naturally occurring compounds, which are also produced and processed by va... more Styrene and indole are naturally occurring compounds, which are also produced and processed by various chemical industries. Thus, it is not surprisingly that microorganisms evolved pathways to detoxify or even to utilize those compounds as carbon sources. Especially, among bacteria several routes are described specifically for the activation and degradation of styrene and indole. Respectively, the initial attack toward these compounds occurs via a flavin-dependent monooxygenase: styrene monooxygenase (SMO) or indole monooxygenase (IMO). In the first place, SMOs have been described to initiate a styrene specific degradation. These are in general two-component systems, whereas a small FAD-reductase (SMOB) delivers reduced FAD on the expense of NADH toward the monooxygenase (SMOA). Various modes of interaction are possible and for both mostly dimeric protein subunits structural data were reported. Thus, this flavoprotein monooxygenase-especially the one from Pseudomonas putida S12 can be seen as the prototype of this class of enzymes. In the course of describing related members of this enzyme family some remarkable findings were made. For example, self-sufficient fusion proteins have been reported as well as enzymes, which could not be assigned to a styrene metabolic activity, rather to indole conversion. Later it was found that this flavoprotein group can be separated at least into two subgroups: styrene and indole monooxygenases. And both enzymes rely on a FAD-reductase to obtain the reduced cofactor (FADred), which is employed to activate molecular oxygen toward hydroperoxy-FAD, which allows substrate epoxidation and the formation of hydroxy-FAD, which finally yields H2O and oxidized FAD.

Research paper thumbnail of Asymmetric Reduction of ( R )‐Carvone through a Thermostable and Organic‐Solvent‐Tolerant Ene‐Reductase

ChemBioChem, 2019

This articlei sp art of aj oint Special Collection dedicated to the Biotrans 2019 symposium. To v... more This articlei sp art of aj oint Special Collection dedicated to the Biotrans 2019 symposium. To view the completecollection, visit our homepage Scheme1.Stereoselective reduction of (R)-carvonethrought he action of an ene-reductase(ER). The nicotinamide (biological or synthetic, NA) actsasa n electrondonor to reduce the flavin cofactor FMN of the ER;this subsequently allows the transfer of ah ydride to C a of the unsaturated substrate. Aproton from ac onserved Tyrr esidue in the ER is added to C b to yield (2R,5R)-dihydrocarvone.

Research paper thumbnail of Enantioselective Epoxidation by Flavoprotein Monooxygenases Supported by Organic Solvents

Catalysts, 2020

Styrene and indole monooxygenases (SMO and IMO) are two-component flavoprotein monooxygenases com... more Styrene and indole monooxygenases (SMO and IMO) are two-component flavoprotein monooxygenases composed of a nicotinamide adenine dinucleotide (NADH)-dependent flavin adenine dinucleotide (FAD)-reductase (StyB or IndB) and a monooxygenase (StyA or IndA). The latter uses reduced FAD to activate oxygen and to oxygenate the substrate while releasing water. We circumvented the need for the reductase by direct FAD reduction in solution using the NAD(P)H-mimic 1-benzyl-1,4-dihydronicotinamide (BNAH) to fuel monooxygenases without NADH requirement. Herein, we report on the hitherto unknown solvent tolerance for the indole monooxygenase from Gemmobacter nectariphilus DSM15620 (GnIndA) and the styrene monooxygenase from Gordonia rubripertincta CWB2 (GrStyA). These enzymes were shown to convert bulky and rather hydrophobic styrene derivatives in the presence of organic cosolvents. Subsequently, BNAH-driven biotransformation was furthermore optimized with regard to the applied cosolvent and its...

Research paper thumbnail of Chirale Epoxidierung von Aryl-Alkyl-Ethern aus Lignin

Chirale Epoxidierung von Aryl-Alkyl-Ethern aus Lignin

BIOspektrum