Daniel Woźniak - Academia.edu (original) (raw)

Papers by Daniel Woźniak

Research paper thumbnail of <i>Pseudomonas aeruginosa</i> Flagellin and Alginate Elicit Very Distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease

Journal of Immunology, Nov 1, 2004

Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. ... more Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. Two P. aeruginosa phenotypes relevant in human disease include motility and mucoidy. Motility is characterized by the presence of flagella and is essential in the establishment of acute infections, while mucoidy, defined by the production of the exopolysaccharide alginate, is critical in the development of chronic infections, such as the infections seen in cystic fibrosis patients. Indeed, chronic infection of the lung by mucoid P. aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. We have used Calu-3 human airway epithelial cells to investigate global responses to infection with motile and mucoid P. aeruginosa. The response of airway epithelial cells to exposure to P. aeruginosa motile strains is characterized by a specific increase in gene expression in pathways controlling inflammation and host defense. By contrast, the response of airway epithelia to the stimuli presented by mucoid P. aeruginosa is not proinflammatory and, hence, may not be conducive to the effective elimination of the pathogen. The pattern of gene expression directed by flagellin, but not alginate, includes innate host defense genes, proinflammatory cytokines, and chemokines. By contrast, infection with alginate-producing P. aeruginosa results in an overall attenuation of host responses and an antiapoptotic effect.

Research paper thumbnail of Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application

Antibiotics, 2021

Over the past few decades, we have witnessed a surge around the world in the emergence of antibio... more Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility o...

Research paper thumbnail of Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections

PLOS Genetics, 2020

Pseudomonas aeruginosa colonizes the airways of cystic fibrosis (CF) patients, causing infections... more Pseudomonas aeruginosa colonizes the airways of cystic fibrosis (CF) patients, causing infections that can last for decades. During the course of these infections, P. aeruginosa undergoes a number of genetic adaptations. One such adaptation is the loss of swimming motility functions. Another involves the formation of the rugose small colony variant (RSCV) phenotype, which is characterized by overproduction of the exopolysaccharides Pel and Psl. Here, we provide evidence that the two adaptations are linked. Using random transposon mutagenesis, we discovered that flagellar mutations are linked to the RSCV phenotype. We found that flagellar mutants overexpressed Pel and Psl in a surface-contact dependent manner. Genetic analyses revealed that flagellar mutants were selected for at high frequencies in biofilms, and that Pel and Psl expression provided the primary fitness benefit in this environment. Suppressor mutagenesis of flagellar RSCVs indicated that Psl overexpression required the mot genes, suggesting that the flagellum stator proteins function in a surfacedependent regulatory pathway for exopolysaccharide biosynthesis. Finally, we identified flagellar mutant RSCVs among CF isolates. The CF environment has long been known to select for flagellar mutants, with the classic interpretation being that the fitness benefit gained relates to an impairment of the host immune system to target a bacterium lacking a flagellum. Our new findings lead us to propose that exopolysaccharide production is a key gain-of-function phenotype that offers a new way to interpret the fitness benefits of these mutations.

Research paper thumbnail of Phosphorylation-Independent Activity of the Response Regulators AlgB and AlgR in Promoting Alginate Biosynthesis in Mucoid Pseudomonas aeruginosa

Journal of Bacteriology, 1998

Overproduction of the capsular polysaccharide alginate appears to confer a selective advantage fo... more Overproduction of the capsular polysaccharide alginate appears to confer a selective advantage for Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The regulators AlgB and AlgR, which are both required as positive activators in alginate overproduction, have homology with the regulator class of two-component environmental responsive proteins which coordinate gene expression through signal transduction mechanisms. Signal transduction in this class of proteins generally occurs via autophosphorylation of the sensor kinase protein and phosphotransfer from the sensor to a conserved aspartate residue, which is present in the amino terminus of the response regulator. Recently, kinB was identified downstream of algB and was shown to encode the cognate histidine protein kinase that efficiently phosphorylates AlgB. However, we show here that a null mutation in kinB in a mucoid cystic fibrosis isolate, P. aeruginosa FRD1, did not block alginate production. The role of the conser...

Research paper thumbnail of Biofilm mechanics: Implications in infection and survival

Biofilm, 2019

It has long been recognized that biofilms are viscoelastic materials, however the importance of t... more It has long been recognized that biofilms are viscoelastic materials, however the importance of this attribute to the survival and persistence of these microbial communities is yet to be fully realized. Here we review work, which focuses on understanding biofilm mechanics and put this knowledge in the context of biofilm survival, particularly for biofilm-associated infections. We note that biofilm viscoelasticity may be an evolved property of these communities, and that the production of multiple extracellular polymeric slime components may be a way to ensure the development of biofilms with complex viscoelastic properties. We discuss viscoelasticity facilitating biofilm survival in the context of promoting the formation of larger and stronger biofilms when exposed to shear forces, promoting fluid-like behavior of the biofilm and subsequent biofilm expansion by viscous flow, and enabling resistance to both mechanical and chemical methods of clearance. We conclude that biofilm viscoelasticity contributes to the virulence of chronic biofilm infections.

Research paper thumbnail of Mixed Communities of Mucoid and Nonmucoid Pseudomonas aeruginosa Exhibit Enhanced Resistance to Host Antimicrobials

mBio, 2018

Pseudomonas aeruginosa causes chronic pulmonary infections in patients with cystic fibrosis (CF).... more Pseudomonas aeruginosa causes chronic pulmonary infections in patients with cystic fibrosis (CF). P. aeruginosa mucoid conversion, defined by overproduction of the exopolysaccharide alginate, correlates with accelerated decline in CF patient lung function. Recalcitrance of the mucoid phenotype to clearance by antibiotics and the immune response is well documented. However, despite advantages conferred by mucoidy, mucoid variants often revert to a nonmucoid phenotype both in vitro and in vivo . Mixed populations of mucoid isolates and nonmucoid revertants are recovered from CF lungs, suggesting a selective benefit for coexistence of these variants. In this study, cocultures of mucoid and nonmucoid variants exhibited enhanced resistance to two host antimicrobials: LL-37, a cationic antimicrobial peptide, and hydrogen peroxide (H 2 O 2 ). Alginate production by mucoid isolates protected nonmucoid variants in consortia from LL-37, as addition of alginate exogenously to nonmucoid variant...

Research paper thumbnail of An IgaA/UmoB-family protein from Serratia marcescens regulates motility, capsular polysaccharide, and secondary metabolite production

Applied and environmental microbiology, Jan 5, 2018

Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-mi... more Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-microbe interactions. The bacterium Serratia marcescens is part of the Enterobacteriaceae family of eubacteria and produces a number of biologically active secondary metabolites. In this study, we screened for novel regulators of secondary metabolites synthesized by a clinical isolate of S. marcescens and found mutations in a gene for an uncharacterized UmoB/IgaA family member here named gumB Mutation of gumB conferred a severe loss of secondary metabolites prodigiosin and serratamolide. The gumB mutation conferred pleiotropic phenotypes including altered biofilm formation, highly increased capsular polysaccharide production, and loss of swimming and swarming motility. These phenotypes corresponded to transcriptional changes in fimA, wecA, and flhD Unlike other UmoB/IgaA family members, gumB was found to be not essential for growth in S. marcescens, yet igaA from Salmonella enterica, yrfF ...

Research paper thumbnail of What's on the Outside Matters: The Role of the Extracellular Polymeric Substance of Gram-negative Biofilms in Evading Host Immunity and as a Target for Therapeutic Intervention

The Journal of biological chemistry, Jan 10, 2016

Biofilms are organized multicellular communities encased in an extracellular polymeric substance ... more Biofilms are organized multicellular communities encased in an extracellular polymeric substance (EPS). Biofilm-resident bacteria resist immunity and antimicrobials. The EPS provides structural stability and presents a barrier; however, a complete understanding of how EPS structure relates to biological function is lacking. This review focuses on the EPS of three Gram-negative pathogens: Pseudomonas aeruginosa, nontypeable Haemophilus influenzae, and Salmonella enterica serovar Typhi/Typhimurium. Although EPS proteins and polysaccharides are diverse, common constituents include extracellular DNA, DNABII (DNA binding and bending) proteins, pili, flagella, and outer membrane vesicles. The EPS biochemistry promotes recalcitrance and informs the design of therapies to reduce or eliminate biofilm burden.

Research paper thumbnail of A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non eDNA networks inPseudomonas aeruginosabiofilms

Pathogens and Disease, 2015

Biofilms are etiologically important in the development of chronic medical and dental infections.... more Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO 4 , for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO 4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO 2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO 2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO 4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO 4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO 4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples.

Research paper thumbnail of Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

Microbiology Spectrum

Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides ... more Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides ca...

Research paper thumbnail of Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities

F1000prime reports, 2014

Microorganisms are rarely found in isolation. Frequently, they live as complex consortia or commu... more Microorganisms are rarely found in isolation. Frequently, they live as complex consortia or communities known as biofilms. The microbes within these complex structures are typically enmeshed in a matrix of macromolecules collectively known as the extracellular polymeric substances (EPS). The last decade has seen enormous growth in the breadth and depth of biofilm-related research. An important area of focus has been the study of pure culture biofilms of different model species. This work has informed us about the different genetic determinants involved in biofilm formation and the environmental conditions that influence the process. These studies have also highlighted both species-specific aspects of biofilm development and common trends observed across many different organisms. This report highlights some exciting findings in recent biofilm-related research.

Research paper thumbnail of Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa

Proceedings of the National Academy of Sciences, 2012

Bacteria have a tendency to attach to surfaces and grow as structured communities called biofilms... more Bacteria have a tendency to attach to surfaces and grow as structured communities called biofilms. Chronic biofilm infections are a problem because they tend to resist antibiotic treatment and are difficult to eradicate. Bacterial biofilms have an extracellular matrix that is usually composed of a mixture of polysaccharides, proteins, and nucleic acids. This matrix has long been assumed to play a passive structural and protective role for resident biofilm cells. Here we show that this view is an oversimplification and that the biofilm matrix can play an active role in stimulating its own synthesis. Working with the model biofilm bacterium Pseudomonas aeruginosa , we found that Psl, a major biofilm matrix polysaccharide for this species, acts as a signal to stimulate two diguanylate cyclases, SiaD and SadC, to produce the intracellular secondary messenger molecule c-di-GMP. Elevated intracellular concentrations of c-di-GMP then lead to the increased production of Psl and other compon...

Research paper thumbnail of The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa

PLoS Pathogens, 2011

Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix materia... more Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cellto-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.

Research paper thumbnail of Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

PLoS Pathogens, 2009

Virtually all cells living in multicellular structures such as tissues and organs are encased in ... more Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

Research paper thumbnail of Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post‐transcriptionally by RsmA

Molecular Microbiology, 2010

SummaryExtracellular polysaccharides are important components of biofilms. In non‐mucoid Pseudomo... more SummaryExtracellular polysaccharides are important components of biofilms. In non‐mucoid Pseudomonas aeruginosa strains, the Pel and Psl polysaccharides are major structural components of the biofilm matrix. In this study, we demonstrate that the alternative σ‐factor RpoS is a positive transcriptional regulator of psl gene expression. Furthermore, we show that psl mRNA has an extensive 5′ untranslated region, to which the post‐transcriptional regulator RsmA binds and represses psl translation. Our observations suggest that upon binding RsmA, the region spanning the ribosome binding site of psl mRNA folds into a secondary stem‐loop structure that blocks the Shine–Dalgarno sequence, preventing ribosome access and protein translation. This constitutes a novel mechanism for translational repression by this family of regulators.

Research paper thumbnail of Complete Genome Sequence of Pseudomonas aeruginosa Lytic Bacteriophage PA1Ø Which Resembles Temperate Bacteriophage D3112

Journal of Virology, 2012

A novel Pseudomonas aeruginosa lytic bacteriophage (phage), PA1Ø, was isolated, and its genome wa... more A novel Pseudomonas aeruginosa lytic bacteriophage (phage), PA1Ø, was isolated, and its genome was sequenced completely. This phage is able to lyse not only P. aeruginosa but also Staphylococcus aureus . Genome analysis of PA1Ø showed that it is similar to a P. aeruginosa temperate phage, D3112, with the exception of the absence of a c repressor-encoding gene, which is known to play a critical role in the maintenance of the lysogenic state of D3112 in P. aeruginosa .

Research paper thumbnail of Mixed‐species biofilm compromises wound healing by disrupting epidermal barrier function

The Journal of Pathology, 2014

In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishe... more In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishes the first chronic preclinical model of wound biofilm infection aimed at addressing the long‐term host response. Although biofilm‐infected wounds did not show marked differences in wound closure, the repaired skin demonstrated compromised barrier function. This observation is clinically significant, because it leads to the notion that even if a biofilm infected wound is closed, as observed visually, it may be complicated by the presence of failed skin, which is likely to be infected and/or further complicated postclosure. Study of the underlying mechanisms recognized for the first time biofilm‐inducible miR‐146a and miR‐106b in the host skin wound‐edge tissue. These miRs silenced ZO‐1 and ZO‐2 to compromise tight junction function, resulting in leaky skin as measured by transepidermal water loss (TEWL). Intervention strategies aimed at inhibiting biofilm‐inducible miRNAs may be producti...

Research paper thumbnail of Pseudomonas aeruginosa Flagellin and Alginate Elicit Very Distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease

The Journal of Immunology, 2004

Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. ... more Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. Two P. aeruginosa phenotypes relevant in human disease include motility and mucoidy. Motility is characterized by the presence of flagella and is essential in the establishment of acute infections, while mucoidy, defined by the production of the exopolysaccharide alginate, is critical in the development of chronic infections, such as the infections seen in cystic fibrosis patients. Indeed, chronic infection of the lung by mucoid P. aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. We have used Calu-3 human airway epithelial cells to investigate global responses to infection with motile and mucoid P. aeruginosa. The response of airway epithelial cells to exposure to P. aeruginosa motile strains is characterized by a specific increase in gene expression in pathways controlling inflammation and host defense. By contrast, the response of airway epithelia to ...

Research paper thumbnail of Identification of psl , a Locus Encoding a Potential Exopolysaccharide That Is Essential for Pseudomonas aeruginosa PAO1 Biofilm Formation

Journal of Bacteriology, 2004

Bacteria inhabiting biofilms usually produce one or more polysaccharides that provide a hydrated ... more Bacteria inhabiting biofilms usually produce one or more polysaccharides that provide a hydrated scaffolding to stabilize and reinforce the structure of the biofilm, mediate cell-cell and cell-surface interactions, and provide protection from biocides and antimicrobial agents. Historically, alginate has been considered the major exopolysaccharide of the Pseudomonas aeruginosa biofilm matrix, with minimal regard to the different functions polysaccharides execute. Recent chemical and genetic studies have demonstrated that alginate is not involved in the initiation of biofilm formation in P. aeruginosa strains PAO1 and PA14. We hypothesized that there is at least one other polysaccharide gene cluster involved in biofilm development. Two separate clusters of genes with homology to exopolysaccharide biosynthetic functions were identified from the annotated PAO1 genome. Reverse genetics was employed to generate mutations in genes from these clusters. We discovered that one group of genes,...

Research paper thumbnail of Pseudomonas aeruginosa Rugose Small-Colony Variants Have Adaptations That Likely Promote Persistence in the Cystic Fibrosis Lung

Journal of Bacteriology, 2009

Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats, ranging from s... more Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats, ranging from soil to immunocompromised people. The formation of surface-associated communities called biofilms is one factor thought to enhance colonization and persistence in these diverse environments. Another factor is the ability of P. aeruginosa to diversify genetically, generating phenotypically distinct subpopulations. One manifestation of diversification is the appearance of colony morphology variants on solid medium. Both laboratory biofilm growth and chronic cystic fibrosis (CF) airway infections produce rugose small-colony variants (RSCVs) characterized by wrinkled, small colonies and an elevated capacity to form biofilms. Previous reports vary on the characteristics attributable to RSCVs. Here we report a detailed comparison of clonally related wild-type and RSCV strains isolated from both CF sputum and laboratory biofilm cultures. The clinical RSCV had many characteristics in common with ...

Research paper thumbnail of <i>Pseudomonas aeruginosa</i> Flagellin and Alginate Elicit Very Distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease

Journal of Immunology, Nov 1, 2004

Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. ... more Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. Two P. aeruginosa phenotypes relevant in human disease include motility and mucoidy. Motility is characterized by the presence of flagella and is essential in the establishment of acute infections, while mucoidy, defined by the production of the exopolysaccharide alginate, is critical in the development of chronic infections, such as the infections seen in cystic fibrosis patients. Indeed, chronic infection of the lung by mucoid P. aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. We have used Calu-3 human airway epithelial cells to investigate global responses to infection with motile and mucoid P. aeruginosa. The response of airway epithelial cells to exposure to P. aeruginosa motile strains is characterized by a specific increase in gene expression in pathways controlling inflammation and host defense. By contrast, the response of airway epithelia to the stimuli presented by mucoid P. aeruginosa is not proinflammatory and, hence, may not be conducive to the effective elimination of the pathogen. The pattern of gene expression directed by flagellin, but not alginate, includes innate host defense genes, proinflammatory cytokines, and chemokines. By contrast, infection with alginate-producing P. aeruginosa results in an overall attenuation of host responses and an antiapoptotic effect.

Research paper thumbnail of Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application

Antibiotics, 2021

Over the past few decades, we have witnessed a surge around the world in the emergence of antibio... more Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility o...

Research paper thumbnail of Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections

PLOS Genetics, 2020

Pseudomonas aeruginosa colonizes the airways of cystic fibrosis (CF) patients, causing infections... more Pseudomonas aeruginosa colonizes the airways of cystic fibrosis (CF) patients, causing infections that can last for decades. During the course of these infections, P. aeruginosa undergoes a number of genetic adaptations. One such adaptation is the loss of swimming motility functions. Another involves the formation of the rugose small colony variant (RSCV) phenotype, which is characterized by overproduction of the exopolysaccharides Pel and Psl. Here, we provide evidence that the two adaptations are linked. Using random transposon mutagenesis, we discovered that flagellar mutations are linked to the RSCV phenotype. We found that flagellar mutants overexpressed Pel and Psl in a surface-contact dependent manner. Genetic analyses revealed that flagellar mutants were selected for at high frequencies in biofilms, and that Pel and Psl expression provided the primary fitness benefit in this environment. Suppressor mutagenesis of flagellar RSCVs indicated that Psl overexpression required the mot genes, suggesting that the flagellum stator proteins function in a surfacedependent regulatory pathway for exopolysaccharide biosynthesis. Finally, we identified flagellar mutant RSCVs among CF isolates. The CF environment has long been known to select for flagellar mutants, with the classic interpretation being that the fitness benefit gained relates to an impairment of the host immune system to target a bacterium lacking a flagellum. Our new findings lead us to propose that exopolysaccharide production is a key gain-of-function phenotype that offers a new way to interpret the fitness benefits of these mutations.

Research paper thumbnail of Phosphorylation-Independent Activity of the Response Regulators AlgB and AlgR in Promoting Alginate Biosynthesis in Mucoid Pseudomonas aeruginosa

Journal of Bacteriology, 1998

Overproduction of the capsular polysaccharide alginate appears to confer a selective advantage fo... more Overproduction of the capsular polysaccharide alginate appears to confer a selective advantage for Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The regulators AlgB and AlgR, which are both required as positive activators in alginate overproduction, have homology with the regulator class of two-component environmental responsive proteins which coordinate gene expression through signal transduction mechanisms. Signal transduction in this class of proteins generally occurs via autophosphorylation of the sensor kinase protein and phosphotransfer from the sensor to a conserved aspartate residue, which is present in the amino terminus of the response regulator. Recently, kinB was identified downstream of algB and was shown to encode the cognate histidine protein kinase that efficiently phosphorylates AlgB. However, we show here that a null mutation in kinB in a mucoid cystic fibrosis isolate, P. aeruginosa FRD1, did not block alginate production. The role of the conser...

Research paper thumbnail of Biofilm mechanics: Implications in infection and survival

Biofilm, 2019

It has long been recognized that biofilms are viscoelastic materials, however the importance of t... more It has long been recognized that biofilms are viscoelastic materials, however the importance of this attribute to the survival and persistence of these microbial communities is yet to be fully realized. Here we review work, which focuses on understanding biofilm mechanics and put this knowledge in the context of biofilm survival, particularly for biofilm-associated infections. We note that biofilm viscoelasticity may be an evolved property of these communities, and that the production of multiple extracellular polymeric slime components may be a way to ensure the development of biofilms with complex viscoelastic properties. We discuss viscoelasticity facilitating biofilm survival in the context of promoting the formation of larger and stronger biofilms when exposed to shear forces, promoting fluid-like behavior of the biofilm and subsequent biofilm expansion by viscous flow, and enabling resistance to both mechanical and chemical methods of clearance. We conclude that biofilm viscoelasticity contributes to the virulence of chronic biofilm infections.

Research paper thumbnail of Mixed Communities of Mucoid and Nonmucoid Pseudomonas aeruginosa Exhibit Enhanced Resistance to Host Antimicrobials

mBio, 2018

Pseudomonas aeruginosa causes chronic pulmonary infections in patients with cystic fibrosis (CF).... more Pseudomonas aeruginosa causes chronic pulmonary infections in patients with cystic fibrosis (CF). P. aeruginosa mucoid conversion, defined by overproduction of the exopolysaccharide alginate, correlates with accelerated decline in CF patient lung function. Recalcitrance of the mucoid phenotype to clearance by antibiotics and the immune response is well documented. However, despite advantages conferred by mucoidy, mucoid variants often revert to a nonmucoid phenotype both in vitro and in vivo . Mixed populations of mucoid isolates and nonmucoid revertants are recovered from CF lungs, suggesting a selective benefit for coexistence of these variants. In this study, cocultures of mucoid and nonmucoid variants exhibited enhanced resistance to two host antimicrobials: LL-37, a cationic antimicrobial peptide, and hydrogen peroxide (H 2 O 2 ). Alginate production by mucoid isolates protected nonmucoid variants in consortia from LL-37, as addition of alginate exogenously to nonmucoid variant...

Research paper thumbnail of An IgaA/UmoB-family protein from Serratia marcescens regulates motility, capsular polysaccharide, and secondary metabolite production

Applied and environmental microbiology, Jan 5, 2018

Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-mi... more Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-microbe interactions. The bacterium Serratia marcescens is part of the Enterobacteriaceae family of eubacteria and produces a number of biologically active secondary metabolites. In this study, we screened for novel regulators of secondary metabolites synthesized by a clinical isolate of S. marcescens and found mutations in a gene for an uncharacterized UmoB/IgaA family member here named gumB Mutation of gumB conferred a severe loss of secondary metabolites prodigiosin and serratamolide. The gumB mutation conferred pleiotropic phenotypes including altered biofilm formation, highly increased capsular polysaccharide production, and loss of swimming and swarming motility. These phenotypes corresponded to transcriptional changes in fimA, wecA, and flhD Unlike other UmoB/IgaA family members, gumB was found to be not essential for growth in S. marcescens, yet igaA from Salmonella enterica, yrfF ...

Research paper thumbnail of What's on the Outside Matters: The Role of the Extracellular Polymeric Substance of Gram-negative Biofilms in Evading Host Immunity and as a Target for Therapeutic Intervention

The Journal of biological chemistry, Jan 10, 2016

Biofilms are organized multicellular communities encased in an extracellular polymeric substance ... more Biofilms are organized multicellular communities encased in an extracellular polymeric substance (EPS). Biofilm-resident bacteria resist immunity and antimicrobials. The EPS provides structural stability and presents a barrier; however, a complete understanding of how EPS structure relates to biological function is lacking. This review focuses on the EPS of three Gram-negative pathogens: Pseudomonas aeruginosa, nontypeable Haemophilus influenzae, and Salmonella enterica serovar Typhi/Typhimurium. Although EPS proteins and polysaccharides are diverse, common constituents include extracellular DNA, DNABII (DNA binding and bending) proteins, pili, flagella, and outer membrane vesicles. The EPS biochemistry promotes recalcitrance and informs the design of therapies to reduce or eliminate biofilm burden.

Research paper thumbnail of A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non eDNA networks inPseudomonas aeruginosabiofilms

Pathogens and Disease, 2015

Biofilms are etiologically important in the development of chronic medical and dental infections.... more Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO 4 , for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO 4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO 2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO 2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO 4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO 4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO 4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples.

Research paper thumbnail of Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

Microbiology Spectrum

Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides ... more Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides ca...

Research paper thumbnail of Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities

F1000prime reports, 2014

Microorganisms are rarely found in isolation. Frequently, they live as complex consortia or commu... more Microorganisms are rarely found in isolation. Frequently, they live as complex consortia or communities known as biofilms. The microbes within these complex structures are typically enmeshed in a matrix of macromolecules collectively known as the extracellular polymeric substances (EPS). The last decade has seen enormous growth in the breadth and depth of biofilm-related research. An important area of focus has been the study of pure culture biofilms of different model species. This work has informed us about the different genetic determinants involved in biofilm formation and the environmental conditions that influence the process. These studies have also highlighted both species-specific aspects of biofilm development and common trends observed across many different organisms. This report highlights some exciting findings in recent biofilm-related research.

Research paper thumbnail of Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa

Proceedings of the National Academy of Sciences, 2012

Bacteria have a tendency to attach to surfaces and grow as structured communities called biofilms... more Bacteria have a tendency to attach to surfaces and grow as structured communities called biofilms. Chronic biofilm infections are a problem because they tend to resist antibiotic treatment and are difficult to eradicate. Bacterial biofilms have an extracellular matrix that is usually composed of a mixture of polysaccharides, proteins, and nucleic acids. This matrix has long been assumed to play a passive structural and protective role for resident biofilm cells. Here we show that this view is an oversimplification and that the biofilm matrix can play an active role in stimulating its own synthesis. Working with the model biofilm bacterium Pseudomonas aeruginosa , we found that Psl, a major biofilm matrix polysaccharide for this species, acts as a signal to stimulate two diguanylate cyclases, SiaD and SadC, to produce the intracellular secondary messenger molecule c-di-GMP. Elevated intracellular concentrations of c-di-GMP then lead to the increased production of Psl and other compon...

Research paper thumbnail of The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa

PLoS Pathogens, 2011

Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix materia... more Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cellto-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.

Research paper thumbnail of Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

PLoS Pathogens, 2009

Virtually all cells living in multicellular structures such as tissues and organs are encased in ... more Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

Research paper thumbnail of Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post‐transcriptionally by RsmA

Molecular Microbiology, 2010

SummaryExtracellular polysaccharides are important components of biofilms. In non‐mucoid Pseudomo... more SummaryExtracellular polysaccharides are important components of biofilms. In non‐mucoid Pseudomonas aeruginosa strains, the Pel and Psl polysaccharides are major structural components of the biofilm matrix. In this study, we demonstrate that the alternative σ‐factor RpoS is a positive transcriptional regulator of psl gene expression. Furthermore, we show that psl mRNA has an extensive 5′ untranslated region, to which the post‐transcriptional regulator RsmA binds and represses psl translation. Our observations suggest that upon binding RsmA, the region spanning the ribosome binding site of psl mRNA folds into a secondary stem‐loop structure that blocks the Shine–Dalgarno sequence, preventing ribosome access and protein translation. This constitutes a novel mechanism for translational repression by this family of regulators.

Research paper thumbnail of Complete Genome Sequence of Pseudomonas aeruginosa Lytic Bacteriophage PA1Ø Which Resembles Temperate Bacteriophage D3112

Journal of Virology, 2012

A novel Pseudomonas aeruginosa lytic bacteriophage (phage), PA1Ø, was isolated, and its genome wa... more A novel Pseudomonas aeruginosa lytic bacteriophage (phage), PA1Ø, was isolated, and its genome was sequenced completely. This phage is able to lyse not only P. aeruginosa but also Staphylococcus aureus . Genome analysis of PA1Ø showed that it is similar to a P. aeruginosa temperate phage, D3112, with the exception of the absence of a c repressor-encoding gene, which is known to play a critical role in the maintenance of the lysogenic state of D3112 in P. aeruginosa .

Research paper thumbnail of Mixed‐species biofilm compromises wound healing by disrupting epidermal barrier function

The Journal of Pathology, 2014

In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishe... more In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishes the first chronic preclinical model of wound biofilm infection aimed at addressing the long‐term host response. Although biofilm‐infected wounds did not show marked differences in wound closure, the repaired skin demonstrated compromised barrier function. This observation is clinically significant, because it leads to the notion that even if a biofilm infected wound is closed, as observed visually, it may be complicated by the presence of failed skin, which is likely to be infected and/or further complicated postclosure. Study of the underlying mechanisms recognized for the first time biofilm‐inducible miR‐146a and miR‐106b in the host skin wound‐edge tissue. These miRs silenced ZO‐1 and ZO‐2 to compromise tight junction function, resulting in leaky skin as measured by transepidermal water loss (TEWL). Intervention strategies aimed at inhibiting biofilm‐inducible miRNAs may be producti...

Research paper thumbnail of Pseudomonas aeruginosa Flagellin and Alginate Elicit Very Distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease

The Journal of Immunology, 2004

Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. ... more Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. Two P. aeruginosa phenotypes relevant in human disease include motility and mucoidy. Motility is characterized by the presence of flagella and is essential in the establishment of acute infections, while mucoidy, defined by the production of the exopolysaccharide alginate, is critical in the development of chronic infections, such as the infections seen in cystic fibrosis patients. Indeed, chronic infection of the lung by mucoid P. aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. We have used Calu-3 human airway epithelial cells to investigate global responses to infection with motile and mucoid P. aeruginosa. The response of airway epithelial cells to exposure to P. aeruginosa motile strains is characterized by a specific increase in gene expression in pathways controlling inflammation and host defense. By contrast, the response of airway epithelia to ...

Research paper thumbnail of Identification of psl , a Locus Encoding a Potential Exopolysaccharide That Is Essential for Pseudomonas aeruginosa PAO1 Biofilm Formation

Journal of Bacteriology, 2004

Bacteria inhabiting biofilms usually produce one or more polysaccharides that provide a hydrated ... more Bacteria inhabiting biofilms usually produce one or more polysaccharides that provide a hydrated scaffolding to stabilize and reinforce the structure of the biofilm, mediate cell-cell and cell-surface interactions, and provide protection from biocides and antimicrobial agents. Historically, alginate has been considered the major exopolysaccharide of the Pseudomonas aeruginosa biofilm matrix, with minimal regard to the different functions polysaccharides execute. Recent chemical and genetic studies have demonstrated that alginate is not involved in the initiation of biofilm formation in P. aeruginosa strains PAO1 and PA14. We hypothesized that there is at least one other polysaccharide gene cluster involved in biofilm development. Two separate clusters of genes with homology to exopolysaccharide biosynthetic functions were identified from the annotated PAO1 genome. Reverse genetics was employed to generate mutations in genes from these clusters. We discovered that one group of genes,...

Research paper thumbnail of Pseudomonas aeruginosa Rugose Small-Colony Variants Have Adaptations That Likely Promote Persistence in the Cystic Fibrosis Lung

Journal of Bacteriology, 2009

Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats, ranging from s... more Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats, ranging from soil to immunocompromised people. The formation of surface-associated communities called biofilms is one factor thought to enhance colonization and persistence in these diverse environments. Another factor is the ability of P. aeruginosa to diversify genetically, generating phenotypically distinct subpopulations. One manifestation of diversification is the appearance of colony morphology variants on solid medium. Both laboratory biofilm growth and chronic cystic fibrosis (CF) airway infections produce rugose small-colony variants (RSCVs) characterized by wrinkled, small colonies and an elevated capacity to form biofilms. Previous reports vary on the characteristics attributable to RSCVs. Here we report a detailed comparison of clonally related wild-type and RSCV strains isolated from both CF sputum and laboratory biofilm cultures. The clinical RSCV had many characteristics in common with ...