Daria Nikitina - Academia.edu (original) (raw)
Papers by Daria Nikitina
Open quaternary, 2020
After the publication of 'Salt-Marsh Foraminiferal Distributions from Mainland Northern Georgia, ... more After the publication of 'Salt-Marsh Foraminiferal Distributions from Mainland Northern Georgia, USA: An Assessment of Their Viability for Sea-Level Studies.' (Chen et al 2020) the authors contacted the publisher, because they realised that two of the figures in the original publication had errors. Specifically, Figures 7 and 8 contained incorrectly labelled scales. The depth unit was listed as metres, when it should have been centimetres. The two figures are reproduced below with the correct scales.
Abstracts with programs, 2022
AGU Fall Meeting Abstracts, Dec 1, 2018
EGU General Assembly Conference Abstracts, Apr 1, 2018
We have assembled a database of Relative Sea Level (RSL) data points from the eastern coast of Ca... more We have assembled a database of Relative Sea Level (RSL) data points from the eastern coast of Canada from Hudson Bay to the border with the USA. In compiling this database we have critically reviewed 1092 radiocarbon dated samples from raised beaches, isolation basins, intertidal and marine deposits, and archaeological indicators to produce 405 sea-level index points and 687 sea-level limiting points. Our comprehensive, systematic, and quality-controlled RSL database allowed for the reconstruction of the postglacial evolution of 34 regions of eastern Canada providing new basin-scale insights into the processes driving RSL changes in the last~16 ka. The combination of a database of sea-level index points with an innovative empirical-Bayesian spatio-temporal statistical model provided new insights into rates and magnitude of the spatially-variable glacial isostatic adjustment (GIA), which dominated the postglacial RSL evolution in this sector of North America. A continuous postglacial RSL fall is observed at latitudes !~50 N with higher rates (up to 35 mm a À1) recorded in southeastern Hudson Bay. At lower latitudes, the evolution is non-monotonic with RSL that dropped to a spatially variable early-Holocene lowstand, followed by a mid-Holocene highstand and, eventually, a gradual drop to present RSL. This pattern is particularly evident in the St Lawrence corridor. Along the majority of the Newfoundland, New Brunswick and western Nova Scotia coasts, a late-Pleistocene/early-Holocene RSL lowstand was followed by a continuous rise through the Holocene. At the margin of the former ice-sheet (i.e. eastern Nova Scotia), our data identify a continuous RSL rise through the Holocene. These records are characterized by decreasing rates of RSL rise through time, commencing with a rapid rise during the early Holocene (up to~17 mm a À1), a slowdown in the mid-Holocene (average rates ~9 mm a À1), and a further reduction in the late Holocene (average rates < 2 mm a À1). Finally, our database allowed the identification of regions, including the Labrador coast and part of the St Lawrence corridor, where further investigations are required to better constrain the RSL evolution and improve our ability to assess the variability of RSL histories.
The Journal of Island and Coastal Archaeology
Geological Society of America Abstracts with Programs
AGU Fall Meeting Abstracts, Dec 1, 2014
Estuarine, Coastal and Shelf Science
Open Quaternary
On low-lying, tropical and subtropical coastlines freshwater marshes may be replaced by salt-tole... more On low-lying, tropical and subtropical coastlines freshwater marshes may be replaced by salt-tolerant mangroves in response to relative sea-level rise. Pollen analysis of radiocarbon-dated sediment cores showed that such a change occurred in Hungry Bay, Bermuda during the late Holocene. This well-established paleoenvironmental trajectory provides an opportunity to explore if geochemical proxies (bulk-sediment δ 13 C and Rock-Eval pyrolysis) can reconstruct known environmental changes and relative sea level. We characterized surface sediment from depositional environments in Bermuda (freshwater wetlands, saline mangroves, and wrack composed of Sargassum natans macroalgae) using geochemical measurements and demonstrate that a multi-proxy approach can objectively distinguish among these environments. However, application of these techniques to the transgressive sediment succession beneath Hungry Bay suggests that freshwater peat and mangrove peat cannot be reliably distinguished in the sedimentary record, possibly because of post-depositional convergence of geochemical characteristics on decadal to multi-century timescales and/or the relatively small number of modern samples analyzed. Sediment that includes substantial contributions from Sargassum is readily identified by geochemistry, but has a limited spatial extent. Radiocarbon dating indicates that beginning at-700 CE, episodic marine incursions into Hungry Bay (e.g., during storms) carried Sargassum that accumulated as wrack and thickened through repeated depositional events until ~300 CE. It took a further ~550 years for a peat-forming mangrove community to colonize Hungry Bay, which then accumulated sediment rapidly, but likely out of equilibrium with regional relative sea-level rise.
Quaternary Science Reviews
Abstract The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible b... more Abstract The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible barrier to the along-strike propagation of megathrust ruptures, separating historical earthquakes to the south (1960 AD 1837, 1737, and 1575) and north (2010 AD, 1835, 1751, 1657, and 1570) of the peninsula. However, the 2010 (Mw 8.8) earthquake propagated into the Arauco Peninsula, re-rupturing part of the megathrust that had ruptured only 50 years earlier during the largest subduction zone earthquake in the instrumental record (Mw 9.5). To better understand long-term slip variability in the Arauco Peninsula region, we analyzed four coastal sedimentary sections from two sites (Tirua, 38.3°S and Quidico, 38.1°S) located within the overlap of the 2010 and 1960 ruptures to reconstruct a ∼600-year record of coseismic land-level change and tsunami inundation. Stratigraphic, lithologic, and diatom results show variable coseismic land-level change coincident with tsunami inundation of the Tirua and Quidico marshes that is consistent with regional historical accounts of coseismic subsidence during earthquakes along the Valdivia portion of the subduction zone (1960 AD and 1575) and coseismic uplift during earthquakes along the Maule portion of the subduction zone (2010 AD, 1835, 1751). In addition, we document variable coseismic land-level change associated with three new prehistoric earthquakes and accompanying tsunamis in 1470–1570 AD, 1425–1455, and 270–410. The mixed record of coseismic subsidence and uplift that we document illustrates the variability of down-dip and lateral slip distribution at the overlap of the 2010 and 1960 ruptures, showing that ruptures have repeatedly propagated into, but not through the Arauco Peninsula and suggesting the area has persisted as a long-term impediment to slip through at least seven of the last megathrust earthquakes (∼600 years).
Open quaternary, 2020
After the publication of 'Salt-Marsh Foraminiferal Distributions from Mainland Northern Georgia, ... more After the publication of 'Salt-Marsh Foraminiferal Distributions from Mainland Northern Georgia, USA: An Assessment of Their Viability for Sea-Level Studies.' (Chen et al 2020) the authors contacted the publisher, because they realised that two of the figures in the original publication had errors. Specifically, Figures 7 and 8 contained incorrectly labelled scales. The depth unit was listed as metres, when it should have been centimetres. The two figures are reproduced below with the correct scales.
Abstracts with programs, 2022
AGU Fall Meeting Abstracts, Dec 1, 2018
EGU General Assembly Conference Abstracts, Apr 1, 2018
We have assembled a database of Relative Sea Level (RSL) data points from the eastern coast of Ca... more We have assembled a database of Relative Sea Level (RSL) data points from the eastern coast of Canada from Hudson Bay to the border with the USA. In compiling this database we have critically reviewed 1092 radiocarbon dated samples from raised beaches, isolation basins, intertidal and marine deposits, and archaeological indicators to produce 405 sea-level index points and 687 sea-level limiting points. Our comprehensive, systematic, and quality-controlled RSL database allowed for the reconstruction of the postglacial evolution of 34 regions of eastern Canada providing new basin-scale insights into the processes driving RSL changes in the last~16 ka. The combination of a database of sea-level index points with an innovative empirical-Bayesian spatio-temporal statistical model provided new insights into rates and magnitude of the spatially-variable glacial isostatic adjustment (GIA), which dominated the postglacial RSL evolution in this sector of North America. A continuous postglacial RSL fall is observed at latitudes !~50 N with higher rates (up to 35 mm a À1) recorded in southeastern Hudson Bay. At lower latitudes, the evolution is non-monotonic with RSL that dropped to a spatially variable early-Holocene lowstand, followed by a mid-Holocene highstand and, eventually, a gradual drop to present RSL. This pattern is particularly evident in the St Lawrence corridor. Along the majority of the Newfoundland, New Brunswick and western Nova Scotia coasts, a late-Pleistocene/early-Holocene RSL lowstand was followed by a continuous rise through the Holocene. At the margin of the former ice-sheet (i.e. eastern Nova Scotia), our data identify a continuous RSL rise through the Holocene. These records are characterized by decreasing rates of RSL rise through time, commencing with a rapid rise during the early Holocene (up to~17 mm a À1), a slowdown in the mid-Holocene (average rates ~9 mm a À1), and a further reduction in the late Holocene (average rates < 2 mm a À1). Finally, our database allowed the identification of regions, including the Labrador coast and part of the St Lawrence corridor, where further investigations are required to better constrain the RSL evolution and improve our ability to assess the variability of RSL histories.
The Journal of Island and Coastal Archaeology
Geological Society of America Abstracts with Programs
AGU Fall Meeting Abstracts, Dec 1, 2014
Estuarine, Coastal and Shelf Science
Open Quaternary
On low-lying, tropical and subtropical coastlines freshwater marshes may be replaced by salt-tole... more On low-lying, tropical and subtropical coastlines freshwater marshes may be replaced by salt-tolerant mangroves in response to relative sea-level rise. Pollen analysis of radiocarbon-dated sediment cores showed that such a change occurred in Hungry Bay, Bermuda during the late Holocene. This well-established paleoenvironmental trajectory provides an opportunity to explore if geochemical proxies (bulk-sediment δ 13 C and Rock-Eval pyrolysis) can reconstruct known environmental changes and relative sea level. We characterized surface sediment from depositional environments in Bermuda (freshwater wetlands, saline mangroves, and wrack composed of Sargassum natans macroalgae) using geochemical measurements and demonstrate that a multi-proxy approach can objectively distinguish among these environments. However, application of these techniques to the transgressive sediment succession beneath Hungry Bay suggests that freshwater peat and mangrove peat cannot be reliably distinguished in the sedimentary record, possibly because of post-depositional convergence of geochemical characteristics on decadal to multi-century timescales and/or the relatively small number of modern samples analyzed. Sediment that includes substantial contributions from Sargassum is readily identified by geochemistry, but has a limited spatial extent. Radiocarbon dating indicates that beginning at-700 CE, episodic marine incursions into Hungry Bay (e.g., during storms) carried Sargassum that accumulated as wrack and thickened through repeated depositional events until ~300 CE. It took a further ~550 years for a peat-forming mangrove community to colonize Hungry Bay, which then accumulated sediment rapidly, but likely out of equilibrium with regional relative sea-level rise.
Quaternary Science Reviews
Abstract The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible b... more Abstract The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible barrier to the along-strike propagation of megathrust ruptures, separating historical earthquakes to the south (1960 AD 1837, 1737, and 1575) and north (2010 AD, 1835, 1751, 1657, and 1570) of the peninsula. However, the 2010 (Mw 8.8) earthquake propagated into the Arauco Peninsula, re-rupturing part of the megathrust that had ruptured only 50 years earlier during the largest subduction zone earthquake in the instrumental record (Mw 9.5). To better understand long-term slip variability in the Arauco Peninsula region, we analyzed four coastal sedimentary sections from two sites (Tirua, 38.3°S and Quidico, 38.1°S) located within the overlap of the 2010 and 1960 ruptures to reconstruct a ∼600-year record of coseismic land-level change and tsunami inundation. Stratigraphic, lithologic, and diatom results show variable coseismic land-level change coincident with tsunami inundation of the Tirua and Quidico marshes that is consistent with regional historical accounts of coseismic subsidence during earthquakes along the Valdivia portion of the subduction zone (1960 AD and 1575) and coseismic uplift during earthquakes along the Maule portion of the subduction zone (2010 AD, 1835, 1751). In addition, we document variable coseismic land-level change associated with three new prehistoric earthquakes and accompanying tsunamis in 1470–1570 AD, 1425–1455, and 270–410. The mixed record of coseismic subsidence and uplift that we document illustrates the variability of down-dip and lateral slip distribution at the overlap of the 2010 and 1960 ruptures, showing that ruptures have repeatedly propagated into, but not through the Arauco Peninsula and suggesting the area has persisted as a long-term impediment to slip through at least seven of the last megathrust earthquakes (∼600 years).