Darren Moore - Academia.edu (original) (raw)

Papers by Darren Moore

Research paper thumbnail of The 2005 AMI System for the Transcription of Speech in Meetings

In this paper we describe the 2005 AMI system for the transcription of speech in meetings used fo... more In this paper we describe the 2005 AMI system for the transcription of speech in meetings used for participation in the 2005 NIST RT evaluations. The system was designed for participation in the speech to text part of the evaluations, in particular for transcription of speech recorded with multiple distant microphones and independent headset microphones. System performance was tested on both conference room and lecture style meetings. Although input sources are processed using different front-ends, the recognition process is based on a unified system architecture. The system operates in multiple passes and makes use of state of the art technologies such as discriminative training, vocal tract length normalisation, heteroscedastic linear discriminant analysis, speaker adaptation with maximum likelihood linear regression and minimum word error rate decoding. In this paper we describe the system performance on the official development and test sets for the NIST RT05s evaluations. The system was jointly developed in less than 10 months by a multi-site team and was shown to achieve very competitive performance.

Research paper thumbnail of Modeling human interaction in meetings

This paper investigates the recognition of group actions in meetings by modeling the joint behavi... more This paper investigates the recognition of group actions in meetings by modeling the joint behaviour of participants. Many meeting actions, such as presentations, discussions and consensus, are characterised by similar or complementary behaviour across participants. Recognising these meaningful actions is an important step towards the goal of providing effective browsing and summarisation of processed meetings. In this work, a corpus of meetings was collected in a room equipped with a number of microphones and cameras. The corpus was labeled in terms of a predefined set of meeting actions characterised by global behaviour. In experiments, audio and visual features for each participant are extracted from the raw data and the interaction of participants is modeled using HMM-based approaches. Initial results on the corpus demonstrate the ability of the system to recognise the set of meeting actions.

Research paper thumbnail of Towards Computer Understanding of Human Interactions

People meet in order to interact -disseminating information, making decisions, and creating new i... more People meet in order to interact -disseminating information, making decisions, and creating new ideas. Automatic analysis of meetings is therefore important from two points of view: extracting the information they contain, and understanding human interaction processes. Based on this view, this article presents an approach in which relevant information content of a meeting is identified from a variety of audio and visual sensor inputs and statistical models of interacting people. We present a framework for computer observation and understanding of interacting people, and discuss particular tasks within this framework, issues in the meeting context, and particular algorithms that we have adopted. We also comment on current developments and the future challenges in automatic meeting analysis.

Research paper thumbnail of Juicer: A weighted finite state transducer speech decoder

A major component in the development of any speech recognition system is the decoder. As task com... more A major component in the development of any speech recognition system is the decoder. As task complexities and, consequently, system complexities have continued to increase the decoding problem has become an increasingly significant component in the overall speech recognition system development effort, with efficient decoder design contributing to significantly improve the trade-off between decoding time and search errors. In this paper we present the "Juicer" (from transducer ) large vocabulary continuous speech recognition (LVCSR) decoder based on weighted finite-State transducer (WFST). We begin with a discussion of the need for open source, state-of-the-art decoding software in LVCSR research and how this lead to the development of Juicer, followed by a brief overview of decoding techniques and major issues in decoder design. We present Juicer and its major features, emphasising its potential not only as a critical component in the development of LVCSR systems, but also as an important research tool in itself, being based around the flexible WFST paradigm. We also provide results of benchmarking tests that have been carried out to date, demonstrating that in many respects Juicer, while still in its early development, is already achieving state-of-the-art. These benchmarking tests serve to not only demonstrate the utility of Juicer in its present state, but are also being used to guide future development, hence, we conclude with a brief discussion of some of the extensions that are currently under way or being considered for Juicer.

Research paper thumbnail of Transcription of Conference Room Meetings: an Investigation

The automatic processing of speech collected in conference style meetings has attracted considera... more The automatic processing of speech collected in conference style meetings has attracted considerable interest with several large scale projects devoted to this area. In this paper we explore the use of various meeting corpora for the purpose of automatic speech recognition. In particular we investigate the similarity of these resources and how to efficiently use them in the construction of a meeting transcription system. The analysis shows distinctive features for each resource. However the benefit in pooling data and hence the similarity seems sufficient to speak of a generic "conference meeting domain". In this context this paper also presents work on development for the AMI meeting transcription system, a joint effort by seven sites working on the AMI (augmented multi-party interaction) project.

Research paper thumbnail of The Development of the AMI System for the Transcription of Speechin Meetings

The automatic processing of speech collected in conference style meetings has attracted considera... more The automatic processing of speech collected in conference style meetings has attracted considerable interest with several large scale projects devoted to this area. This paper describes the development of a baseline automatic speech transcription system for meetings in the context of the AMI (Augmented Multiparty Interaction) project. We present several techniques important to processing of this data and show the performance in terms of word error rates (WERs). An important aspect of transcription of this data is the necessary flexibility in terms of audio pre-processing. Real world systems have to deal with flexible input, for example by using microphone arrays or randomly placed microphones in a room. Automatic segmentation and microphone array processing techniques are described and the effect on WERs is discussed. The system and its components presented in this paper yield competitive performance and form a baseline for future research in this domain.

Research paper thumbnail of On the Use of Information Retrieval Measures for Speech Recognition Evaluation

This paper discusses the evaluation of automatic speech recognition (ASR) systems developed for p... more This paper discusses the evaluation of automatic speech recognition (ASR) systems developed for practical applications, suggesting a set of criteria for application-oriented performance measures. The commonly used word error rate (WER), which poses ASR evaluation as a string editing process, is shown to have a number of limitations with respect to these criteria, motivating alternative or additional measures. This paper suggests that posing speech recognition evaluation as an information retrieval problem, where each word is one unit of information, offers a flexible framework for application-oriented performance analysis based on the concepts of recall and precision.

Research paper thumbnail of Audio-visual speaker tracking with importance particle filters

We present a probabilistic method for audio-visual (AV) speaker tracking, using an uncalibrated w... more We present a probabilistic method for audio-visual (AV) speaker tracking, using an uncalibrated wide-angle camera and a microphone array. The algorithm fuses 2-D object shape and audio information via importance particle filters (I-PFs), allowing for the asymmetrical integration of AV information in a way that efficiently exploits the complementary features of each modality. Audio localization information is used to generate an importance sampling (IS) function, which guides the random search process of a particle filter towards regions of the configuration space likely to contain the true configuration (a speaker). The measurement process integrates contour-based and audio observations, which results in reliable head tracking in realistic scenarios. We show that imperfect single modalities can be combined into an algorithm that automatically initializes and tracks a speaker, switches between multiple speakers, tolerates visual clutter, and recovers from total AV object occlusion, in the context of a multimodal meeting room.

Research paper thumbnail of The 2005 AMI System for the Transcription of Speech in Meetings

In this paper we describe the 2005 AMI system for the transcription of speech in meetings used fo... more In this paper we describe the 2005 AMI system for the transcription of speech in meetings used for participation in the 2005 NIST RT evaluations. The system was designed for participation in the speech to text part of the evaluations, in particular for transcription of speech recorded with multiple distant microphones and independent headset microphones. System performance was tested on both conference room and lecture style meetings. Although input sources are processed using different front-ends, the recognition process is based on a unified system architecture. The system operates in multiple passes and makes use of state of the art technologies such as discriminative training, vocal tract length normalisation, heteroscedastic linear discriminant analysis, speaker adaptation with maximum likelihood linear regression and minimum word error rate decoding. In this paper we describe the system performance on the official development and test sets for the NIST RT05s evaluations. The system was jointly developed in less than 10 months by a multi-site team and was shown to achieve very competitive performance.

Research paper thumbnail of Modeling human interaction in meetings

This paper investigates the recognition of group actions in meetings by modeling the joint behavi... more This paper investigates the recognition of group actions in meetings by modeling the joint behaviour of participants. Many meeting actions, such as presentations, discussions and consensus, are characterised by similar or complementary behaviour across participants. Recognising these meaningful actions is an important step towards the goal of providing effective browsing and summarisation of processed meetings. In this work, a corpus of meetings was collected in a room equipped with a number of microphones and cameras. The corpus was labeled in terms of a predefined set of meeting actions characterised by global behaviour. In experiments, audio and visual features for each participant are extracted from the raw data and the interaction of participants is modeled using HMM-based approaches. Initial results on the corpus demonstrate the ability of the system to recognise the set of meeting actions.

Research paper thumbnail of Towards Computer Understanding of Human Interactions

People meet in order to interact -disseminating information, making decisions, and creating new i... more People meet in order to interact -disseminating information, making decisions, and creating new ideas. Automatic analysis of meetings is therefore important from two points of view: extracting the information they contain, and understanding human interaction processes. Based on this view, this article presents an approach in which relevant information content of a meeting is identified from a variety of audio and visual sensor inputs and statistical models of interacting people. We present a framework for computer observation and understanding of interacting people, and discuss particular tasks within this framework, issues in the meeting context, and particular algorithms that we have adopted. We also comment on current developments and the future challenges in automatic meeting analysis.

Research paper thumbnail of Juicer: A weighted finite state transducer speech decoder

A major component in the development of any speech recognition system is the decoder. As task com... more A major component in the development of any speech recognition system is the decoder. As task complexities and, consequently, system complexities have continued to increase the decoding problem has become an increasingly significant component in the overall speech recognition system development effort, with efficient decoder design contributing to significantly improve the trade-off between decoding time and search errors. In this paper we present the "Juicer" (from transducer ) large vocabulary continuous speech recognition (LVCSR) decoder based on weighted finite-State transducer (WFST). We begin with a discussion of the need for open source, state-of-the-art decoding software in LVCSR research and how this lead to the development of Juicer, followed by a brief overview of decoding techniques and major issues in decoder design. We present Juicer and its major features, emphasising its potential not only as a critical component in the development of LVCSR systems, but also as an important research tool in itself, being based around the flexible WFST paradigm. We also provide results of benchmarking tests that have been carried out to date, demonstrating that in many respects Juicer, while still in its early development, is already achieving state-of-the-art. These benchmarking tests serve to not only demonstrate the utility of Juicer in its present state, but are also being used to guide future development, hence, we conclude with a brief discussion of some of the extensions that are currently under way or being considered for Juicer.

Research paper thumbnail of Transcription of Conference Room Meetings: an Investigation

The automatic processing of speech collected in conference style meetings has attracted considera... more The automatic processing of speech collected in conference style meetings has attracted considerable interest with several large scale projects devoted to this area. In this paper we explore the use of various meeting corpora for the purpose of automatic speech recognition. In particular we investigate the similarity of these resources and how to efficiently use them in the construction of a meeting transcription system. The analysis shows distinctive features for each resource. However the benefit in pooling data and hence the similarity seems sufficient to speak of a generic "conference meeting domain". In this context this paper also presents work on development for the AMI meeting transcription system, a joint effort by seven sites working on the AMI (augmented multi-party interaction) project.

Research paper thumbnail of The Development of the AMI System for the Transcription of Speechin Meetings

The automatic processing of speech collected in conference style meetings has attracted considera... more The automatic processing of speech collected in conference style meetings has attracted considerable interest with several large scale projects devoted to this area. This paper describes the development of a baseline automatic speech transcription system for meetings in the context of the AMI (Augmented Multiparty Interaction) project. We present several techniques important to processing of this data and show the performance in terms of word error rates (WERs). An important aspect of transcription of this data is the necessary flexibility in terms of audio pre-processing. Real world systems have to deal with flexible input, for example by using microphone arrays or randomly placed microphones in a room. Automatic segmentation and microphone array processing techniques are described and the effect on WERs is discussed. The system and its components presented in this paper yield competitive performance and form a baseline for future research in this domain.

Research paper thumbnail of On the Use of Information Retrieval Measures for Speech Recognition Evaluation

This paper discusses the evaluation of automatic speech recognition (ASR) systems developed for p... more This paper discusses the evaluation of automatic speech recognition (ASR) systems developed for practical applications, suggesting a set of criteria for application-oriented performance measures. The commonly used word error rate (WER), which poses ASR evaluation as a string editing process, is shown to have a number of limitations with respect to these criteria, motivating alternative or additional measures. This paper suggests that posing speech recognition evaluation as an information retrieval problem, where each word is one unit of information, offers a flexible framework for application-oriented performance analysis based on the concepts of recall and precision.

Research paper thumbnail of Audio-visual speaker tracking with importance particle filters

We present a probabilistic method for audio-visual (AV) speaker tracking, using an uncalibrated w... more We present a probabilistic method for audio-visual (AV) speaker tracking, using an uncalibrated wide-angle camera and a microphone array. The algorithm fuses 2-D object shape and audio information via importance particle filters (I-PFs), allowing for the asymmetrical integration of AV information in a way that efficiently exploits the complementary features of each modality. Audio localization information is used to generate an importance sampling (IS) function, which guides the random search process of a particle filter towards regions of the configuration space likely to contain the true configuration (a speaker). The measurement process integrates contour-based and audio observations, which results in reliable head tracking in realistic scenarios. We show that imperfect single modalities can be combined into an algorithm that automatically initializes and tracks a speaker, switches between multiple speakers, tolerates visual clutter, and recovers from total AV object occlusion, in the context of a multimodal meeting room.