Deepak Roy - Academia.edu (original) (raw)
Uploads
Papers by Deepak Roy
Physical Review B, 2021
We report a comprehensive investigation of the triple perovskite iridate Ba3CoIr2O9. Stabilizing ... more We report a comprehensive investigation of the triple perovskite iridate Ba3CoIr2O9. Stabilizing in the hexagonal P 63/mmc symmetry at room temperature, this system transforms to a monoclinic C2/c symmetry at the magnetic phase transition. On further reduction in temperature, the system partially distorts to an even lower symmetry (P 2/c), with both these structurally disparate phases coexisting down to the lowest measured temperatures. The magnetic structure as determined from neutron diffraction data indicates a weakly canted antiferromagnetic structure, which is also supported by first-principles calculations. Theory indicates that the Ir 5+ carries a finite magnetic moment, which is also consistent with the neutron data. This suggests that the putative J = 0 state is avoided. Measurements of heat capacity, electrical resistance noise and dielectric susceptibility all point towards the stabilization of a highly correlated ground state in the Ba3CoIr2O9 system.
Physical Review B, 2021
We report a comprehensive investigation of the triple perovskite iridate Ba3CoIr2O9. Stabilizing ... more We report a comprehensive investigation of the triple perovskite iridate Ba3CoIr2O9. Stabilizing in the hexagonal P 63/mmc symmetry at room temperature, this system transforms to a monoclinic C2/c symmetry at the magnetic phase transition. On further reduction in temperature, the system partially distorts to an even lower symmetry (P 2/c), with both these structurally disparate phases coexisting down to the lowest measured temperatures. The magnetic structure as determined from neutron diffraction data indicates a weakly canted antiferromagnetic structure, which is also supported by first-principles calculations. Theory indicates that the Ir 5+ carries a finite magnetic moment, which is also consistent with the neutron data. This suggests that the putative J = 0 state is avoided. Measurements of heat capacity, electrical resistance noise and dielectric susceptibility all point towards the stabilization of a highly correlated ground state in the Ba3CoIr2O9 system.